\(\int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx\) [570]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 247 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\frac {(a-b) \left (a^2+4 a b+b^2\right ) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {(a-b) \left (a^2+4 a b+b^2\right ) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {(a+b) \left (a^2-4 a b+b^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\tan (c+d x)}}{1+\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {2 a \left (a^2-3 b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{35 d}+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d} \] Output:

-1/2*(a-b)*(a^2+4*a*b+b^2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)/d-1 
/2*(a-b)*(a^2+4*a*b+b^2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)/d-1/2* 
(a+b)*(a^2-4*a*b+b^2)*arctanh(2^(1/2)*tan(d*x+c)^(1/2)/(1+tan(d*x+c)))*2^( 
1/2)/d+2*a*(a^2-3*b^2)*tan(d*x+c)^(1/2)/d+2/3*b*(3*a^2-b^2)*tan(d*x+c)^(3/ 
2)/d+32/35*a*b^2*tan(d*x+c)^(5/2)/d+2/7*b^2*tan(d*x+c)^(5/2)*(a+b*tan(d*x+ 
c))/d
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.97 (sec) , antiderivative size = 144, normalized size of antiderivative = 0.58 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\frac {105 \sqrt [4]{-1} (a-i b)^3 \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )+105 \sqrt [4]{-1} (a+i b)^3 \text {arctanh}\left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )+2 \sqrt {\tan (c+d x)} \left (105 \left (a^3-3 a b^2\right )-35 b \left (-3 a^2+b^2\right ) \tan (c+d x)+63 a b^2 \tan ^2(c+d x)+15 b^3 \tan ^3(c+d x)\right )}{105 d} \] Input:

Integrate[Tan[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^3,x]
 

Output:

(105*(-1)^(1/4)*(a - I*b)^3*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] + 105*(- 
1)^(1/4)*(a + I*b)^3*ArcTanh[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] + 2*Sqrt[Tan[c 
 + d*x]]*(105*(a^3 - 3*a*b^2) - 35*b*(-3*a^2 + b^2)*Tan[c + d*x] + 63*a*b^ 
2*Tan[c + d*x]^2 + 15*b^3*Tan[c + d*x]^3))/(105*d)
 

Rubi [A] (verified)

Time = 1.04 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.13, number of steps used = 21, number of rules used = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.870, Rules used = {3042, 4049, 27, 3042, 4113, 3042, 4011, 3042, 4011, 3042, 4017, 27, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \tan (c+d x)^{3/2} (a+b \tan (c+d x))^3dx\)

\(\Big \downarrow \) 4049

\(\displaystyle \frac {2}{7} \int \frac {1}{2} \tan ^{\frac {3}{2}}(c+d x) \left (16 a b^2 \tan ^2(c+d x)+7 b \left (3 a^2-b^2\right ) \tan (c+d x)+a \left (7 a^2-5 b^2\right )\right )dx+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \int \tan ^{\frac {3}{2}}(c+d x) \left (16 a b^2 \tan ^2(c+d x)+7 b \left (3 a^2-b^2\right ) \tan (c+d x)+a \left (7 a^2-5 b^2\right )\right )dx+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \int \tan (c+d x)^{3/2} \left (16 a b^2 \tan (c+d x)^2+7 b \left (3 a^2-b^2\right ) \tan (c+d x)+a \left (7 a^2-5 b^2\right )\right )dx+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 4113

\(\displaystyle \frac {1}{7} \left (\int \tan ^{\frac {3}{2}}(c+d x) \left (7 a \left (a^2-3 b^2\right )+7 b \left (3 a^2-b^2\right ) \tan (c+d x)\right )dx+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\int \tan (c+d x)^{3/2} \left (7 a \left (a^2-3 b^2\right )+7 b \left (3 a^2-b^2\right ) \tan (c+d x)\right )dx+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 4011

\(\displaystyle \frac {1}{7} \left (\int \sqrt {\tan (c+d x)} \left (7 a \left (a^2-3 b^2\right ) \tan (c+d x)-7 b \left (3 a^2-b^2\right )\right )dx+\frac {14 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\int \sqrt {\tan (c+d x)} \left (7 a \left (a^2-3 b^2\right ) \tan (c+d x)-7 b \left (3 a^2-b^2\right )\right )dx+\frac {14 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 4011

\(\displaystyle \frac {1}{7} \left (\int \frac {-7 a \left (a^2-3 b^2\right )-7 b \left (3 a^2-b^2\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx+\frac {14 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {14 a \left (a^2-3 b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\int \frac {-7 a \left (a^2-3 b^2\right )-7 b \left (3 a^2-b^2\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx+\frac {14 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {14 a \left (a^2-3 b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {1}{7} \left (\frac {2 \int -\frac {7 \left (a \left (a^2-3 b^2\right )+b \left (3 a^2-b^2\right ) \tan (c+d x)\right )}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}}{d}+\frac {14 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {14 a \left (a^2-3 b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (-\frac {14 \int \frac {a \left (a^2-3 b^2\right )+b \left (3 a^2-b^2\right ) \tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}}{d}+\frac {14 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {14 a \left (a^2-3 b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {1}{7} \left (-\frac {14 \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {\tan (c+d x)+1}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d}+\frac {14 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {14 a \left (a^2-3 b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {1}{7} \left (-\frac {14 \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {1}{2} \int \frac {1}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} \int \frac {1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )\right )}{d}+\frac {14 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {14 a \left (a^2-3 b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {1}{7} \left (-\frac {14 \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d}+\frac {14 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {14 a \left (a^2-3 b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{7} \left (-\frac {14 \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {14 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {14 a \left (a^2-3 b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {1}{7} \left (-\frac {14 \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {14 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {14 a \left (a^2-3 b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{7} \left (-\frac {14 \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {14 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {14 a \left (a^2-3 b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (-\frac {14 \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\tan (c+d x)}+1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {14 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {14 a \left (a^2-3 b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {1}{7} \left (-\frac {14 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d}+\frac {14 b \left (3 a^2-b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {14 a \left (a^2-3 b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {32 a b^2 \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )+\frac {2 b^2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}\)

Input:

Int[Tan[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^3,x]
 

Output:

(2*b^2*Tan[c + d*x]^(5/2)*(a + b*Tan[c + d*x]))/(7*d) + ((-14*(((a - b)*(a 
^2 + 4*a*b + b^2)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sqrt[2]) + Arc 
Tan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sqrt[2]))/2 + ((a + b)*(a^2 - 4*a*b + 
b^2)*(-1/2*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]/Sqrt[2] + Lo 
g[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]/(2*Sqrt[2])))/2))/d + (14 
*a*(a^2 - 3*b^2)*Sqrt[Tan[c + d*x]])/d + (14*b*(3*a^2 - b^2)*Tan[c + d*x]^ 
(3/2))/(3*d) + (32*a*b^2*Tan[c + d*x]^(5/2))/(5*d))/7
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4011
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Int 
[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 
 0] && GtQ[m, 0]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4049
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c 
+ d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Simp[1/(d*(m + n - 1)) 
 Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^n*Simp[a^3*d*(m + n 
- 1) - b^2*(b*c*(m - 2) + a*d*(1 + n)) + b*d*(m + n - 1)*(3*a^2 - b^2)*Tan[ 
e + f*x] - b^2*(b*c*(m - 2) - a*d*(3*m + 2*n - 4))*Tan[e + f*x]^2, x], x], 
x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2 
, 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 2] && (GeQ[n, -1] || I 
ntegerQ[m]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])) 
)
 

rule 4113
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + 
 b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])^m*Si 
mp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && 
NeQ[A*b^2 - a*b*B + a^2*C, 0] &&  !LeQ[m, -1]
 
Maple [A] (verified)

Time = 0.13 (sec) , antiderivative size = 279, normalized size of antiderivative = 1.13

method result size
derivativedivides \(\frac {\frac {2 b^{3} \tan \left (d x +c \right )^{\frac {7}{2}}}{7}+\frac {6 a \,b^{2} \tan \left (d x +c \right )^{\frac {5}{2}}}{5}+2 a^{2} b \tan \left (d x +c \right )^{\frac {3}{2}}-\frac {2 b^{3} \tan \left (d x +c \right )^{\frac {3}{2}}}{3}+2 a^{3} \sqrt {\tan \left (d x +c \right )}-6 a \,b^{2} \sqrt {\tan \left (d x +c \right )}+\frac {\left (-a^{3}+3 a \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}+\frac {\left (-3 a^{2} b +b^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}}{d}\) \(279\)
default \(\frac {\frac {2 b^{3} \tan \left (d x +c \right )^{\frac {7}{2}}}{7}+\frac {6 a \,b^{2} \tan \left (d x +c \right )^{\frac {5}{2}}}{5}+2 a^{2} b \tan \left (d x +c \right )^{\frac {3}{2}}-\frac {2 b^{3} \tan \left (d x +c \right )^{\frac {3}{2}}}{3}+2 a^{3} \sqrt {\tan \left (d x +c \right )}-6 a \,b^{2} \sqrt {\tan \left (d x +c \right )}+\frac {\left (-a^{3}+3 a \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}+\frac {\left (-3 a^{2} b +b^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}}{d}\) \(279\)
parts \(\frac {a^{3} \left (2 \sqrt {\tan \left (d x +c \right )}-\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}+\frac {b^{3} \left (\frac {2 \tan \left (d x +c \right )^{\frac {7}{2}}}{7}-\frac {2 \tan \left (d x +c \right )^{\frac {3}{2}}}{3}+\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}+\frac {3 a \,b^{2} \left (\frac {2 \tan \left (d x +c \right )^{\frac {5}{2}}}{5}-2 \sqrt {\tan \left (d x +c \right )}+\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}+\frac {3 a^{2} b \left (\frac {2 \tan \left (d x +c \right )^{\frac {3}{2}}}{3}-\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}\) \(438\)

Input:

int(tan(d*x+c)^(3/2)*(a+b*tan(d*x+c))^3,x,method=_RETURNVERBOSE)
 

Output:

1/d*(2/7*b^3*tan(d*x+c)^(7/2)+6/5*a*b^2*tan(d*x+c)^(5/2)+2*a^2*b*tan(d*x+c 
)^(3/2)-2/3*b^3*tan(d*x+c)^(3/2)+2*a^3*tan(d*x+c)^(1/2)-6*a*b^2*tan(d*x+c) 
^(1/2)+1/4*(-a^3+3*a*b^2)*2^(1/2)*(ln((tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1/2) 
+1)/(tan(d*x+c)-2^(1/2)*tan(d*x+c)^(1/2)+1))+2*arctan(1+2^(1/2)*tan(d*x+c) 
^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))+1/4*(-3*a^2*b+b^3)*2^(1/2)* 
(ln((tan(d*x+c)-2^(1/2)*tan(d*x+c)^(1/2)+1)/(tan(d*x+c)+2^(1/2)*tan(d*x+c) 
^(1/2)+1))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d* 
x+c)^(1/2))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 944 vs. \(2 (215) = 430\).

Time = 0.10 (sec) , antiderivative size = 944, normalized size of antiderivative = 3.82 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx =\text {Too large to display} \] Input:

integrate(tan(d*x+c)^(3/2)*(a+b*tan(d*x+c))^3,x, algorithm="fricas")
 

Output:

1/210*(210*sqrt(1/2)*d*sqrt((a^6 + 6*a^5*b + 3*a^4*b^2 - 20*a^3*b^3 + 3*a^ 
2*b^4 + 6*a*b^5 + b^6)/d^2)*arctan(-(2*sqrt(1/2)*(a^3 - 3*a^2*b - 3*a*b^2 
+ b^3)*d*sqrt((a^6 + 6*a^5*b + 3*a^4*b^2 - 20*a^3*b^3 + 3*a^2*b^4 + 6*a*b^ 
5 + b^6)/d^2)*sqrt(tan(d*x + c)) + d^2*sqrt((a^6 + 6*a^5*b + 3*a^4*b^2 - 2 
0*a^3*b^3 + 3*a^2*b^4 + 6*a*b^5 + b^6)/d^2)*sqrt((a^6 - 6*a^5*b + 3*a^4*b^ 
2 + 20*a^3*b^3 + 3*a^2*b^4 - 6*a*b^5 + b^6)/d^2))/(a^6 - 15*a^4*b^2 + 15*a 
^2*b^4 - b^6)) + 210*sqrt(1/2)*d*sqrt((a^6 + 6*a^5*b + 3*a^4*b^2 - 20*a^3* 
b^3 + 3*a^2*b^4 + 6*a*b^5 + b^6)/d^2)*arctan(-(2*sqrt(1/2)*(a^3 - 3*a^2*b 
- 3*a*b^2 + b^3)*d*sqrt((a^6 + 6*a^5*b + 3*a^4*b^2 - 20*a^3*b^3 + 3*a^2*b^ 
4 + 6*a*b^5 + b^6)/d^2)*sqrt(tan(d*x + c)) - d^2*sqrt((a^6 + 6*a^5*b + 3*a 
^4*b^2 - 20*a^3*b^3 + 3*a^2*b^4 + 6*a*b^5 + b^6)/d^2)*sqrt((a^6 - 6*a^5*b 
+ 3*a^4*b^2 + 20*a^3*b^3 + 3*a^2*b^4 - 6*a*b^5 + b^6)/d^2))/(a^6 - 15*a^4* 
b^2 + 15*a^2*b^4 - b^6)) - 105*sqrt(1/2)*d*sqrt((a^6 - 6*a^5*b + 3*a^4*b^2 
 + 20*a^3*b^3 + 3*a^2*b^4 - 6*a*b^5 + b^6)/d^2)*log(a^3 - 3*a^2*b - 3*a*b^ 
2 + b^3 + 2*sqrt(1/2)*d*sqrt((a^6 - 6*a^5*b + 3*a^4*b^2 + 20*a^3*b^3 + 3*a 
^2*b^4 - 6*a*b^5 + b^6)/d^2)*sqrt(tan(d*x + c)) + (a^3 - 3*a^2*b - 3*a*b^2 
 + b^3)*tan(d*x + c)) + 105*sqrt(1/2)*d*sqrt((a^6 - 6*a^5*b + 3*a^4*b^2 + 
20*a^3*b^3 + 3*a^2*b^4 - 6*a*b^5 + b^6)/d^2)*log(a^3 - 3*a^2*b - 3*a*b^2 + 
 b^3 - 2*sqrt(1/2)*d*sqrt((a^6 - 6*a^5*b + 3*a^4*b^2 + 20*a^3*b^3 + 3*a^2* 
b^4 - 6*a*b^5 + b^6)/d^2)*sqrt(tan(d*x + c)) + (a^3 - 3*a^2*b - 3*a*b^2...
 

Sympy [F]

\[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\int \left (a + b \tan {\left (c + d x \right )}\right )^{3} \tan ^{\frac {3}{2}}{\left (c + d x \right )}\, dx \] Input:

integrate(tan(d*x+c)**(3/2)*(a+b*tan(d*x+c))**3,x)
 

Output:

Integral((a + b*tan(c + d*x))**3*tan(c + d*x)**(3/2), x)
 

Maxima [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 258, normalized size of antiderivative = 1.04 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\frac {120 \, b^{3} \tan \left (d x + c\right )^{\frac {7}{2}} + 504 \, a b^{2} \tan \left (d x + c\right )^{\frac {5}{2}} - 210 \, \sqrt {2} {\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - 210 \, \sqrt {2} {\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - 105 \, \sqrt {2} {\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + 105 \, \sqrt {2} {\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + 280 \, {\left (3 \, a^{2} b - b^{3}\right )} \tan \left (d x + c\right )^{\frac {3}{2}} + 840 \, {\left (a^{3} - 3 \, a b^{2}\right )} \sqrt {\tan \left (d x + c\right )}}{420 \, d} \] Input:

integrate(tan(d*x+c)^(3/2)*(a+b*tan(d*x+c))^3,x, algorithm="maxima")
 

Output:

1/420*(120*b^3*tan(d*x + c)^(7/2) + 504*a*b^2*tan(d*x + c)^(5/2) - 210*sqr 
t(2)*(a^3 + 3*a^2*b - 3*a*b^2 - b^3)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt( 
tan(d*x + c)))) - 210*sqrt(2)*(a^3 + 3*a^2*b - 3*a*b^2 - b^3)*arctan(-1/2* 
sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c)))) - 105*sqrt(2)*(a^3 - 3*a^2*b - 3 
*a*b^2 + b^3)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + 105*sqr 
t(2)*(a^3 - 3*a^2*b - 3*a*b^2 + b^3)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan 
(d*x + c) + 1) + 280*(3*a^2*b - b^3)*tan(d*x + c)^(3/2) + 840*(a^3 - 3*a*b 
^2)*sqrt(tan(d*x + c)))/d
 

Giac [F(-2)]

Exception generated. \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\text {Exception raised: TypeError} \] Input:

integrate(tan(d*x+c)^(3/2)*(a+b*tan(d*x+c))^3,x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [B] (verification not implemented)

Time = 5.68 (sec) , antiderivative size = 1729, normalized size of antiderivative = 7.00 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\text {Too large to display} \] Input:

int(tan(c + d*x)^(3/2)*(a + b*tan(c + d*x))^3,x)
 

Output:

tan(c + d*x)^(1/2)*((2*a^3)/d - (6*a*b^2)/d) - tan(c + d*x)^(3/2)*((2*b^3) 
/(3*d) - (2*a^2*b)/d) - atan((((8*(4*a^3*d^2 - 12*a*b^2*d^2)*(-(6*a*b^5 + 
6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2 
))^(1/2))/d^3 - (16*tan(c + d*x)^(1/2)*(a^6 - b^6 + 15*a^2*b^4 - 15*a^4*b^ 
2))/d^2)*(-(6*a*b^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 
 + a^4*b^2*15i)/(4*d^2))^(1/2)*1i - ((8*(4*a^3*d^2 - 12*a*b^2*d^2)*(-(6*a* 
b^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/ 
(4*d^2))^(1/2))/d^3 + (16*tan(c + d*x)^(1/2)*(a^6 - b^6 + 15*a^2*b^4 - 15* 
a^4*b^2))/d^2)*(-(6*a*b^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a 
^3*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2)*1i)/((16*(3*a^8*b - b^9 + 6*a^4*b^5 + 
 8*a^6*b^3))/d^3 + ((8*(4*a^3*d^2 - 12*a*b^2*d^2)*(-(6*a*b^5 + 6*a^5*b - a 
^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2))/d 
^3 - (16*tan(c + d*x)^(1/2)*(a^6 - b^6 + 15*a^2*b^4 - 15*a^4*b^2))/d^2)*(- 
(6*a*b^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2* 
15i)/(4*d^2))^(1/2) + ((8*(4*a^3*d^2 - 12*a*b^2*d^2)*(-(6*a*b^5 + 6*a^5*b 
- a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2) 
)/d^3 + (16*tan(c + d*x)^(1/2)*(a^6 - b^6 + 15*a^2*b^4 - 15*a^4*b^2))/d^2) 
*(-(6*a*b^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b 
^2*15i)/(4*d^2))^(1/2)))*(-(6*a*b^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4* 
15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2)*2i - atan((((8*(4*a^3*d^...
 

Reduce [F]

\[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx=\frac {6 \sqrt {\tan \left (d x +c \right )}\, \tan \left (d x +c \right )^{2} a \,b^{2}+10 \sqrt {\tan \left (d x +c \right )}\, a^{3}-30 \sqrt {\tan \left (d x +c \right )}\, a \,b^{2}-5 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )}d x \right ) a^{3} d +15 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )}d x \right ) a \,b^{2} d +5 \left (\int \sqrt {\tan \left (d x +c \right )}\, \tan \left (d x +c \right )^{4}d x \right ) b^{3} d +15 \left (\int \sqrt {\tan \left (d x +c \right )}\, \tan \left (d x +c \right )^{2}d x \right ) a^{2} b d}{5 d} \] Input:

int(tan(d*x+c)^(3/2)*(a+b*tan(d*x+c))^3,x)
 

Output:

(6*sqrt(tan(c + d*x))*tan(c + d*x)**2*a*b**2 + 10*sqrt(tan(c + d*x))*a**3 
- 30*sqrt(tan(c + d*x))*a*b**2 - 5*int(sqrt(tan(c + d*x))/tan(c + d*x),x)* 
a**3*d + 15*int(sqrt(tan(c + d*x))/tan(c + d*x),x)*a*b**2*d + 5*int(sqrt(t 
an(c + d*x))*tan(c + d*x)**4,x)*b**3*d + 15*int(sqrt(tan(c + d*x))*tan(c + 
 d*x)**2,x)*a**2*b*d)/(5*d)