\(\int \frac {a+b \tan (c+d x)}{\sqrt {e \tan (c+d x)}} \, dx\) [580]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 147 \[ \int \frac {a+b \tan (c+d x)}{\sqrt {e \tan (c+d x)}} \, dx=-\frac {(a+b) \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d \sqrt {e}}+\frac {(a+b) \arctan \left (1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d \sqrt {e}}+\frac {(a-b) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}+\sqrt {e} \tan (c+d x)}\right )}{\sqrt {2} d \sqrt {e}} \] Output:

-1/2*(a+b)*arctan(1-2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))*2^(1/2)/d/e^(1/2 
)+1/2*(a+b)*arctan(1+2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))*2^(1/2)/d/e^(1/ 
2)+1/2*(a-b)*arctanh(2^(1/2)*(e*tan(d*x+c))^(1/2)/(e^(1/2)+e^(1/2)*tan(d*x 
+c)))*2^(1/2)/d/e^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.06 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.56 \[ \int \frac {a+b \tan (c+d x)}{\sqrt {e \tan (c+d x)}} \, dx=-\frac {\sqrt [4]{-1} \left ((a-i b) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )+(a+i b) \text {arctanh}\left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )\right ) \sqrt {\tan (c+d x)}}{d \sqrt {e \tan (c+d x)}} \] Input:

Integrate[(a + b*Tan[c + d*x])/Sqrt[e*Tan[c + d*x]],x]
 

Output:

-(((-1)^(1/4)*((a - I*b)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] + (a + I*b) 
*ArcTanh[(-1)^(3/4)*Sqrt[Tan[c + d*x]]])*Sqrt[Tan[c + d*x]])/(d*Sqrt[e*Tan 
[c + d*x]]))
 

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.34, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3042, 4017, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \tan (c+d x)}{\sqrt {e \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a+b \tan (c+d x)}{\sqrt {e \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {2 \int \frac {a e+b \tan (c+d x) e}{\tan ^2(c+d x) e^2+e^2}d\sqrt {e \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \int \frac {e-e \tan (c+d x)}{\tan ^2(c+d x) e^2+e^2}d\sqrt {e \tan (c+d x)}+\frac {1}{2} (a+b) \int \frac {\tan (c+d x) e+e}{\tan ^2(c+d x) e^2+e^2}d\sqrt {e \tan (c+d x)}\right )}{d}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \int \frac {e-e \tan (c+d x)}{\tan ^2(c+d x) e^2+e^2}d\sqrt {e \tan (c+d x)}+\frac {1}{2} (a+b) \left (\frac {1}{2} \int \frac {1}{\tan (c+d x) e+e-\sqrt {2} \sqrt {e \tan (c+d x)} \sqrt {e}}d\sqrt {e \tan (c+d x)}+\frac {1}{2} \int \frac {1}{\tan (c+d x) e+e+\sqrt {2} \sqrt {e \tan (c+d x)} \sqrt {e}}d\sqrt {e \tan (c+d x)}\right )\right )}{d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \int \frac {e-e \tan (c+d x)}{\tan ^2(c+d x) e^2+e^2}d\sqrt {e \tan (c+d x)}+\frac {1}{2} (a+b) \left (\frac {\int \frac {1}{-e \tan (c+d x)-1}d\left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}-\frac {\int \frac {1}{-e \tan (c+d x)-1}d\left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \int \frac {e-e \tan (c+d x)}{\tan ^2(c+d x) e^2+e^2}d\sqrt {e \tan (c+d x)}+\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (-\frac {\int -\frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \tan (c+d x)}}{\tan (c+d x) e+e-\sqrt {2} \sqrt {e \tan (c+d x)} \sqrt {e}}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{\tan (c+d x) e+e+\sqrt {2} \sqrt {e \tan (c+d x)} \sqrt {e}}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )+\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \tan (c+d x)}}{\tan (c+d x) e+e-\sqrt {2} \sqrt {e \tan (c+d x)} \sqrt {e}}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{\tan (c+d x) e+e+\sqrt {2} \sqrt {e \tan (c+d x)} \sqrt {e}}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )+\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \tan (c+d x)}}{\tan (c+d x) e+e-\sqrt {2} \sqrt {e \tan (c+d x)} \sqrt {e}}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {e}+\sqrt {2} \sqrt {e \tan (c+d x)}}{\tan (c+d x) e+e+\sqrt {2} \sqrt {e \tan (c+d x)} \sqrt {e}}d\sqrt {e \tan (c+d x)}}{2 \sqrt {e}}\right )+\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )+\frac {1}{2} (a-b) \left (\frac {\log \left (e \tan (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \tan (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \tan (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \tan (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d}\)

Input:

Int[(a + b*Tan[c + d*x])/Sqrt[e*Tan[c + d*x]],x]
 

Output:

(2*(((a + b)*(-(ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]]/(Sqrt[2 
]*Sqrt[e])) + ArcTan[1 + (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]]/(Sqrt[2]* 
Sqrt[e])))/2 + ((a - b)*(-1/2*Log[e + e*Tan[c + d*x] - Sqrt[2]*Sqrt[e]*Sqr 
t[e*Tan[c + d*x]]]/(Sqrt[2]*Sqrt[e]) + Log[e + e*Tan[c + d*x] + Sqrt[2]*Sq 
rt[e]*Sqrt[e*Tan[c + d*x]]]/(2*Sqrt[2]*Sqrt[e])))/2))/d
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(272\) vs. \(2(117)=234\).

Time = 0.28 (sec) , antiderivative size = 273, normalized size of antiderivative = 1.86

method result size
derivativedivides \(\frac {\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \tan \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \tan \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 e}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {e \tan \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \tan \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (e^{2}\right )^{\frac {1}{4}}}}{d}\) \(273\)
default \(\frac {\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \tan \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \tan \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 e}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {e \tan \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \tan \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (e^{2}\right )^{\frac {1}{4}}}}{d}\) \(273\)
parts \(\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \tan \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \tan \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d e}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {e \tan \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \tan \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d \left (e^{2}\right )^{\frac {1}{4}}}\) \(275\)

Input:

int((a+b*tan(d*x+c))/(e*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/d*(1/4*a/e*(e^2)^(1/4)*2^(1/2)*(ln((e*tan(d*x+c)+(e^2)^(1/4)*(e*tan(d*x+ 
c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*tan(d*x+c)-(e^2)^(1/4)*(e*tan(d*x+c))^(1 
/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*tan(d*x+c))^(1/2 
)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*tan(d*x+c))^(1/2)+1))+1/4*b/(e^2)^(1 
/4)*2^(1/2)*(ln((e*tan(d*x+c)-(e^2)^(1/4)*(e*tan(d*x+c))^(1/2)*2^(1/2)+(e^ 
2)^(1/2))/(e*tan(d*x+c)+(e^2)^(1/4)*(e*tan(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/ 
2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*tan(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2 
)/(e^2)^(1/4)*(e*tan(d*x+c))^(1/2)+1)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 653 vs. \(2 (117) = 234\).

Time = 0.09 (sec) , antiderivative size = 653, normalized size of antiderivative = 4.44 \[ \int \frac {a+b \tan (c+d x)}{\sqrt {e \tan (c+d x)}} \, dx=-\frac {1}{2} \, \sqrt {-\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} + 2 \, a b}{d^{2} e}} \log \left (-{\left (a^{4} - b^{4}\right )} \sqrt {e \tan \left (d x + c\right )} + {\left (b d^{3} e^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} + {\left (a^{3} - a b^{2}\right )} d e\right )} \sqrt {-\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} + 2 \, a b}{d^{2} e}}\right ) + \frac {1}{2} \, \sqrt {-\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} + 2 \, a b}{d^{2} e}} \log \left (-{\left (a^{4} - b^{4}\right )} \sqrt {e \tan \left (d x + c\right )} - {\left (b d^{3} e^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} + {\left (a^{3} - a b^{2}\right )} d e\right )} \sqrt {-\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} + 2 \, a b}{d^{2} e}}\right ) + \frac {1}{2} \, \sqrt {\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} - 2 \, a b}{d^{2} e}} \log \left (-{\left (a^{4} - b^{4}\right )} \sqrt {e \tan \left (d x + c\right )} + {\left (b d^{3} e^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} - {\left (a^{3} - a b^{2}\right )} d e\right )} \sqrt {\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} - 2 \, a b}{d^{2} e}}\right ) - \frac {1}{2} \, \sqrt {\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} - 2 \, a b}{d^{2} e}} \log \left (-{\left (a^{4} - b^{4}\right )} \sqrt {e \tan \left (d x + c\right )} - {\left (b d^{3} e^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} - {\left (a^{3} - a b^{2}\right )} d e\right )} \sqrt {\frac {d^{2} e \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{2}}} - 2 \, a b}{d^{2} e}}\right ) \] Input:

integrate((a+b*tan(d*x+c))/(e*tan(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

-1/2*sqrt(-(d^2*e*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) + 2*a*b)/(d^2*e 
))*log(-(a^4 - b^4)*sqrt(e*tan(d*x + c)) + (b*d^3*e^2*sqrt(-(a^4 - 2*a^2*b 
^2 + b^4)/(d^4*e^2)) + (a^3 - a*b^2)*d*e)*sqrt(-(d^2*e*sqrt(-(a^4 - 2*a^2* 
b^2 + b^4)/(d^4*e^2)) + 2*a*b)/(d^2*e))) + 1/2*sqrt(-(d^2*e*sqrt(-(a^4 - 2 
*a^2*b^2 + b^4)/(d^4*e^2)) + 2*a*b)/(d^2*e))*log(-(a^4 - b^4)*sqrt(e*tan(d 
*x + c)) - (b*d^3*e^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) + (a^3 - a* 
b^2)*d*e)*sqrt(-(d^2*e*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) + 2*a*b)/( 
d^2*e))) + 1/2*sqrt((d^2*e*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) - 2*a* 
b)/(d^2*e))*log(-(a^4 - b^4)*sqrt(e*tan(d*x + c)) + (b*d^3*e^2*sqrt(-(a^4 
- 2*a^2*b^2 + b^4)/(d^4*e^2)) - (a^3 - a*b^2)*d*e)*sqrt((d^2*e*sqrt(-(a^4 
- 2*a^2*b^2 + b^4)/(d^4*e^2)) - 2*a*b)/(d^2*e))) - 1/2*sqrt((d^2*e*sqrt(-( 
a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) - 2*a*b)/(d^2*e))*log(-(a^4 - b^4)*sqrt( 
e*tan(d*x + c)) - (b*d^3*e^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) - (a 
^3 - a*b^2)*d*e)*sqrt((d^2*e*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^2)) - 2* 
a*b)/(d^2*e)))
 

Sympy [F]

\[ \int \frac {a+b \tan (c+d x)}{\sqrt {e \tan (c+d x)}} \, dx=\int \frac {a + b \tan {\left (c + d x \right )}}{\sqrt {e \tan {\left (c + d x \right )}}}\, dx \] Input:

integrate((a+b*tan(d*x+c))/(e*tan(d*x+c))**(1/2),x)
 

Output:

Integral((a + b*tan(c + d*x))/sqrt(e*tan(c + d*x)), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \tan (c+d x)}{\sqrt {e \tan (c+d x)}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a+b*tan(d*x+c))/(e*tan(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F]

\[ \int \frac {a+b \tan (c+d x)}{\sqrt {e \tan (c+d x)}} \, dx=\int { \frac {b \tan \left (d x + c\right ) + a}{\sqrt {e \tan \left (d x + c\right )}} \,d x } \] Input:

integrate((a+b*tan(d*x+c))/(e*tan(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

sage0*x
                                                                                    
                                                                                    
 

Mupad [B] (verification not implemented)

Time = 2.02 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.82 \[ \int \frac {a+b \tan (c+d x)}{\sqrt {e \tan (c+d x)}} \, dx=\frac {{\left (-1\right )}^{1/4}\,b\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {tan}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{d\,\sqrt {e}}-\frac {{\left (-1\right )}^{1/4}\,b\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {tan}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{d\,\sqrt {e}}-\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {tan}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d\,\sqrt {e}}-\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {tan}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d\,\sqrt {e}} \] Input:

int((a + b*tan(c + d*x))/(e*tan(c + d*x))^(1/2),x)
 

Output:

((-1)^(1/4)*b*atan(((-1)^(1/4)*(e*tan(c + d*x))^(1/2))/e^(1/2)))/(d*e^(1/2 
)) - ((-1)^(1/4)*a*atanh(((-1)^(1/4)*(e*tan(c + d*x))^(1/2))/e^(1/2))*1i)/ 
(d*e^(1/2)) - ((-1)^(1/4)*a*atan(((-1)^(1/4)*(e*tan(c + d*x))^(1/2))/e^(1/ 
2))*1i)/(d*e^(1/2)) - ((-1)^(1/4)*b*atanh(((-1)^(1/4)*(e*tan(c + d*x))^(1/ 
2))/e^(1/2)))/(d*e^(1/2))
 

Reduce [F]

\[ \int \frac {a+b \tan (c+d x)}{\sqrt {e \tan (c+d x)}} \, dx=\frac {\sqrt {e}\, \left (\left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )}d x \right ) a +\left (\int \sqrt {\tan \left (d x +c \right )}d x \right ) b \right )}{e} \] Input:

int((a+b*tan(d*x+c))/(e*tan(d*x+c))^(1/2),x)
 

Output:

(sqrt(e)*(int(sqrt(tan(c + d*x))/tan(c + d*x),x)*a + int(sqrt(tan(c + d*x) 
),x)*b))/e