\(\int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx\) [598]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 337 \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=\frac {\left (a^2-2 a b-b^2\right ) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {\left (a^2-2 a b-b^2\right ) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {b^{7/2} \left (9 a^2+5 b^2\right ) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{a^{7/2} \left (a^2+b^2\right )^2 d}-\frac {\left (a^2+2 a b-b^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\tan (c+d x)}}{1+\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {2 a^2+5 b^2}{3 a^2 \left (a^2+b^2\right ) d \tan ^{\frac {3}{2}}(c+d x)}+\frac {b \left (4 a^2+5 b^2\right )}{a^3 \left (a^2+b^2\right ) d \sqrt {\tan (c+d x)}}+\frac {b^2}{a \left (a^2+b^2\right ) d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))} \] Output:

-1/2*(a^2-2*a*b-b^2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)/(a^2+b^2) 
^2/d-1/2*(a^2-2*a*b-b^2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)/(a^2+b 
^2)^2/d+b^(7/2)*(9*a^2+5*b^2)*arctan(b^(1/2)*tan(d*x+c)^(1/2)/a^(1/2))/a^( 
7/2)/(a^2+b^2)^2/d-1/2*(a^2+2*a*b-b^2)*arctanh(2^(1/2)*tan(d*x+c)^(1/2)/(1 
+tan(d*x+c)))*2^(1/2)/(a^2+b^2)^2/d-1/3*(2*a^2+5*b^2)/a^2/(a^2+b^2)/d/tan( 
d*x+c)^(3/2)+b*(4*a^2+5*b^2)/a^3/(a^2+b^2)/d/tan(d*x+c)^(1/2)+b^2/a/(a^2+b 
^2)/d/tan(d*x+c)^(3/2)/(a+b*tan(d*x+c))
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.16 (sec) , antiderivative size = 230, normalized size of antiderivative = 0.68 \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=\frac {\frac {3 \left (\sqrt [4]{-1} a^{7/2} (a+i b)^2 \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )+b^{7/2} \left (9 a^2+5 b^2\right ) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )+\sqrt [4]{-1} a^{7/2} (a-i b)^2 \text {arctanh}\left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )\right )}{a^{5/2} \left (a^2+b^2\right )}-\frac {2 a^2+5 b^2}{a \tan ^{\frac {3}{2}}(c+d x)}+\frac {3 b \left (4 a^2+5 b^2\right )}{a^2 \sqrt {\tan (c+d x)}}+\frac {3 b^2}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}}{3 a \left (a^2+b^2\right ) d} \] Input:

Integrate[1/(Tan[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^2),x]
 

Output:

((3*((-1)^(1/4)*a^(7/2)*(a + I*b)^2*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] 
+ b^(7/2)*(9*a^2 + 5*b^2)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]] + ( 
-1)^(1/4)*a^(7/2)*(a - I*b)^2*ArcTanh[(-1)^(3/4)*Sqrt[Tan[c + d*x]]]))/(a^ 
(5/2)*(a^2 + b^2)) - (2*a^2 + 5*b^2)/(a*Tan[c + d*x]^(3/2)) + (3*b*(4*a^2 
+ 5*b^2))/(a^2*Sqrt[Tan[c + d*x]]) + (3*b^2)/(Tan[c + d*x]^(3/2)*(a + b*Ta 
n[c + d*x])))/(3*a*(a^2 + b^2)*d)
 

Rubi [A] (verified)

Time = 1.97 (sec) , antiderivative size = 363, normalized size of antiderivative = 1.08, number of steps used = 27, number of rules used = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.130, Rules used = {3042, 4052, 27, 3042, 4132, 27, 3042, 4132, 27, 3042, 4136, 27, 3042, 4017, 27, 1482, 1476, 1082, 217, 1479, 25, 27, 1103, 4117, 73, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (c+d x)^{5/2} (a+b \tan (c+d x))^2}dx\)

\(\Big \downarrow \) 4052

\(\displaystyle \frac {\int \frac {2 a^2-2 b \tan (c+d x) a+5 b^2+5 b^2 \tan ^2(c+d x)}{2 \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}dx}{a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {2 a^2-2 b \tan (c+d x) a+5 b^2+5 b^2 \tan ^2(c+d x)}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}dx}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {2 a^2-2 b \tan (c+d x) a+5 b^2+5 b^2 \tan (c+d x)^2}{\tan (c+d x)^{5/2} (a+b \tan (c+d x))}dx}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 4132

\(\displaystyle \frac {-\frac {2 \int \frac {3 \left (2 \tan (c+d x) a^3+b \left (2 a^2+5 b^2\right ) \tan ^2(c+d x)+b \left (4 a^2+5 b^2\right )\right )}{2 \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}dx}{3 a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\int \frac {2 \tan (c+d x) a^3+b \left (2 a^2+5 b^2\right ) \tan ^2(c+d x)+b \left (4 a^2+5 b^2\right )}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}dx}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\int \frac {2 \tan (c+d x) a^3+b \left (2 a^2+5 b^2\right ) \tan (c+d x)^2+b \left (4 a^2+5 b^2\right )}{\tan (c+d x)^{3/2} (a+b \tan (c+d x))}dx}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 4132

\(\displaystyle \frac {-\frac {-\frac {2 \int -\frac {2 a^4-2 b \tan (c+d x) a^3-4 b^2 a^2-5 b^4-b^2 \left (4 a^2+5 b^2\right ) \tan ^2(c+d x)}{2 \sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\frac {\int \frac {2 a^4-2 b \tan (c+d x) a^3-4 b^2 a^2-5 b^4-b^2 \left (4 a^2+5 b^2\right ) \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\frac {\int \frac {2 a^4-2 b \tan (c+d x) a^3-4 b^2 a^2-5 b^4-b^2 \left (4 a^2+5 b^2\right ) \tan (c+d x)^2}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 4136

\(\displaystyle \frac {-\frac {\frac {\frac {\int \frac {2 \left (a^3 \left (a^2-b^2\right )-2 a^4 b \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx}{a^2+b^2}-\frac {b^4 \left (9 a^2+5 b^2\right ) \int \frac {\tan ^2(c+d x)+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\frac {\frac {2 \int \frac {a^3 \left (a^2-b^2\right )-2 a^4 b \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx}{a^2+b^2}-\frac {b^4 \left (9 a^2+5 b^2\right ) \int \frac {\tan ^2(c+d x)+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\frac {\frac {2 \int \frac {a^3 \left (a^2-b^2\right )-2 a^4 b \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx}{a^2+b^2}-\frac {b^4 \left (9 a^2+5 b^2\right ) \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {-\frac {\frac {\frac {4 \int \frac {a^3 \left (a^2-2 b \tan (c+d x) a-b^2\right )}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right )}-\frac {b^4 \left (9 a^2+5 b^2\right ) \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\frac {\frac {4 a^3 \int \frac {a^2-2 b \tan (c+d x) a-b^2}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right )}-\frac {b^4 \left (9 a^2+5 b^2\right ) \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {-\frac {\frac {\frac {4 a^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} \left (a^2-2 a b-b^2\right ) \int \frac {\tan (c+d x)+1}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d \left (a^2+b^2\right )}-\frac {b^4 \left (9 a^2+5 b^2\right ) \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {-\frac {\frac {\frac {4 a^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {1}{2} \int \frac {1}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} \int \frac {1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )\right )}{d \left (a^2+b^2\right )}-\frac {b^4 \left (9 a^2+5 b^2\right ) \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {-\frac {\frac {\frac {4 a^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {b^4 \left (9 a^2+5 b^2\right ) \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {-\frac {\frac {\frac {4 a^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {b^4 \left (9 a^2+5 b^2\right ) \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {-\frac {\frac {\frac {4 a^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {b^4 \left (9 a^2+5 b^2\right ) \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {\frac {\frac {4 a^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {b^4 \left (9 a^2+5 b^2\right ) \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\frac {\frac {4 a^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\tan (c+d x)}+1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )+\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {b^4 \left (9 a^2+5 b^2\right ) \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {-\frac {\frac {\frac {4 a^3 \left (\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {b^4 \left (9 a^2+5 b^2\right ) \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}dx}{a^2+b^2}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {-\frac {\frac {\frac {4 a^3 \left (\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {b^4 \left (9 a^2+5 b^2\right ) \int \frac {1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))}d\tan (c+d x)}{d \left (a^2+b^2\right )}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {-\frac {\frac {\frac {4 a^3 \left (\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {2 b^4 \left (9 a^2+5 b^2\right ) \int \frac {1}{a+b \tan (c+d x)}d\sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right )}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}}{2 a \left (a^2+b^2\right )}+\frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {b^2}{a d \left (a^2+b^2\right ) \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))}+\frac {-\frac {2 \left (2 a^2+5 b^2\right )}{3 a d \tan ^{\frac {3}{2}}(c+d x)}-\frac {\frac {\frac {4 a^3 \left (\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {2 b^{7/2} \left (9 a^2+5 b^2\right ) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} d \left (a^2+b^2\right )}}{a}-\frac {2 b \left (4 a^2+5 b^2\right )}{a d \sqrt {\tan (c+d x)}}}{a}}{2 a \left (a^2+b^2\right )}\)

Input:

Int[1/(Tan[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^2),x]
 

Output:

(-((((-2*b^(7/2)*(9*a^2 + 5*b^2)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[ 
a]])/(Sqrt[a]*(a^2 + b^2)*d) + (4*a^3*(((a^2 - 2*a*b - b^2)*(-(ArcTan[1 - 
Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sqrt[2]) + ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x 
]]]/Sqrt[2]))/2 + ((a^2 + 2*a*b - b^2)*(-1/2*Log[1 - Sqrt[2]*Sqrt[Tan[c + 
d*x]] + Tan[c + d*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c 
 + d*x]]/(2*Sqrt[2])))/2))/((a^2 + b^2)*d))/a - (2*b*(4*a^2 + 5*b^2))/(a*d 
*Sqrt[Tan[c + d*x]]))/a) - (2*(2*a^2 + 5*b^2))/(3*a*d*Tan[c + d*x]^(3/2))) 
/(2*a*(a^2 + b^2)) + b^2/(a*(a^2 + b^2)*d*Tan[c + d*x]^(3/2)*(a + b*Tan[c 
+ d*x]))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4052
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c 
+ d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + Simp[1 
/((m + 1)*(a^2 + b^2)*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + 
d*Tan[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - 
 a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x], x], x] / 
; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] 
 && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || Integ 
erQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4136
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^ 
n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[ 
(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*((1 + Tan[ 
e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, 
 C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] & 
&  !GtQ[n, 0] &&  !LeQ[n, -1]
 
Maple [A] (verified)

Time = 0.13 (sec) , antiderivative size = 310, normalized size of antiderivative = 0.92

method result size
derivativedivides \(\frac {-\frac {2}{3 a^{2} \tan \left (d x +c \right )^{\frac {3}{2}}}+\frac {4 b}{a^{3} \sqrt {\tan \left (d x +c \right )}}+\frac {2 b^{4} \left (\frac {\left (\frac {a^{2}}{2}+\frac {b^{2}}{2}\right ) \sqrt {\tan \left (d x +c \right )}}{a +b \tan \left (d x +c \right )}+\frac {\left (9 a^{2}+5 b^{2}\right ) \arctan \left (\frac {b \sqrt {\tan \left (d x +c \right )}}{\sqrt {a b}}\right )}{2 \sqrt {a b}}\right )}{a^{3} \left (a^{2}+b^{2}\right )^{2}}+\frac {\frac {\left (-a^{2}+b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}+\frac {a b \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{2}}{\left (a^{2}+b^{2}\right )^{2}}}{d}\) \(310\)
default \(\frac {-\frac {2}{3 a^{2} \tan \left (d x +c \right )^{\frac {3}{2}}}+\frac {4 b}{a^{3} \sqrt {\tan \left (d x +c \right )}}+\frac {2 b^{4} \left (\frac {\left (\frac {a^{2}}{2}+\frac {b^{2}}{2}\right ) \sqrt {\tan \left (d x +c \right )}}{a +b \tan \left (d x +c \right )}+\frac {\left (9 a^{2}+5 b^{2}\right ) \arctan \left (\frac {b \sqrt {\tan \left (d x +c \right )}}{\sqrt {a b}}\right )}{2 \sqrt {a b}}\right )}{a^{3} \left (a^{2}+b^{2}\right )^{2}}+\frac {\frac {\left (-a^{2}+b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}+\frac {a b \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{2}}{\left (a^{2}+b^{2}\right )^{2}}}{d}\) \(310\)

Input:

int(1/tan(d*x+c)^(5/2)/(a+b*tan(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

1/d*(-2/3/a^2/tan(d*x+c)^(3/2)+4/a^3*b/tan(d*x+c)^(1/2)+2*b^4/a^3/(a^2+b^2 
)^2*((1/2*a^2+1/2*b^2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))+1/2*(9*a^2+5*b^2) 
/(a*b)^(1/2)*arctan(b*tan(d*x+c)^(1/2)/(a*b)^(1/2)))+2/(a^2+b^2)^2*(1/8*(- 
a^2+b^2)*2^(1/2)*(ln((tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1/2)+1)/(tan(d*x+c)-2 
^(1/2)*tan(d*x+c)^(1/2)+1))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan( 
-1+2^(1/2)*tan(d*x+c)^(1/2)))+1/4*a*b*2^(1/2)*(ln((tan(d*x+c)-2^(1/2)*tan( 
d*x+c)^(1/2)+1)/(tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1/2)+1))+2*arctan(1+2^(1/2 
)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1642 vs. \(2 (301) = 602\).

Time = 0.82 (sec) , antiderivative size = 3314, normalized size of antiderivative = 9.83 \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=\text {Too large to display} \] Input:

integrate(1/tan(d*x+c)^(5/2)/(a+b*tan(d*x+c))^2,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=\int \frac {1}{\left (a + b \tan {\left (c + d x \right )}\right )^{2} \tan ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate(1/tan(d*x+c)**(5/2)/(a+b*tan(d*x+c))**2,x)
 

Output:

Integral(1/((a + b*tan(c + d*x))**2*tan(c + d*x)**(5/2)), x)
 

Maxima [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 342, normalized size of antiderivative = 1.01 \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=\frac {\frac {12 \, {\left (9 \, a^{2} b^{4} + 5 \, b^{6}\right )} \arctan \left (\frac {b \sqrt {\tan \left (d x + c\right )}}{\sqrt {a b}}\right )}{{\left (a^{7} + 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} \sqrt {a b}} - \frac {4 \, {\left (2 \, a^{4} + 2 \, a^{2} b^{2} - 3 \, {\left (4 \, a^{2} b^{2} + 5 \, b^{4}\right )} \tan \left (d x + c\right )^{2} - 10 \, {\left (a^{3} b + a b^{3}\right )} \tan \left (d x + c\right )\right )}}{{\left (a^{5} b + a^{3} b^{3}\right )} \tan \left (d x + c\right )^{\frac {5}{2}} + {\left (a^{6} + a^{4} b^{2}\right )} \tan \left (d x + c\right )^{\frac {3}{2}}} - \frac {3 \, {\left (2 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) - \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )\right )}}{a^{4} + 2 \, a^{2} b^{2} + b^{4}}}{12 \, d} \] Input:

integrate(1/tan(d*x+c)^(5/2)/(a+b*tan(d*x+c))^2,x, algorithm="maxima")
 

Output:

1/12*(12*(9*a^2*b^4 + 5*b^6)*arctan(b*sqrt(tan(d*x + c))/sqrt(a*b))/((a^7 
+ 2*a^5*b^2 + a^3*b^4)*sqrt(a*b)) - 4*(2*a^4 + 2*a^2*b^2 - 3*(4*a^2*b^2 + 
5*b^4)*tan(d*x + c)^2 - 10*(a^3*b + a*b^3)*tan(d*x + c))/((a^5*b + a^3*b^3 
)*tan(d*x + c)^(5/2) + (a^6 + a^4*b^2)*tan(d*x + c)^(3/2)) - 3*(2*sqrt(2)* 
(a^2 - 2*a*b - b^2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)))) + 
 2*sqrt(2)*(a^2 - 2*a*b - b^2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d 
*x + c)))) + sqrt(2)*(a^2 + 2*a*b - b^2)*log(sqrt(2)*sqrt(tan(d*x + c)) + 
tan(d*x + c) + 1) - sqrt(2)*(a^2 + 2*a*b - b^2)*log(-sqrt(2)*sqrt(tan(d*x 
+ c)) + tan(d*x + c) + 1))/(a^4 + 2*a^2*b^2 + b^4))/d
 

Giac [F]

\[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=\int { \frac {1}{{\left (b \tan \left (d x + c\right ) + a\right )}^{2} \tan \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/tan(d*x+c)^(5/2)/(a+b*tan(d*x+c))^2,x, algorithm="giac")
 

Output:

undef
 

Mupad [B] (verification not implemented)

Time = 6.97 (sec) , antiderivative size = 6886, normalized size of antiderivative = 20.43 \[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=\text {Too large to display} \] Input:

int(1/(tan(c + d*x)^(5/2)*(a + b*tan(c + d*x))^2),x)
 

Output:

((10*b*tan(c + d*x))/(3*a^2) - 2/(3*a) + (tan(c + d*x)^2*(5*b^4 + 4*a^2*b^ 
2))/(a^3*(a^2 + b^2)))/(a*d*tan(c + d*x)^(3/2) + b*d*tan(c + d*x)^(5/2)) - 
 atan(((-1i/(4*(a^4*d^2 + b^4*d^2 + a*b^3*d^2*4i - a^3*b*d^2*4i - 6*a^2*b^ 
2*d^2)))^(1/2)*((-1i/(4*(a^4*d^2 + b^4*d^2 + a*b^3*d^2*4i - a^3*b*d^2*4i - 
 6*a^2*b^2*d^2)))^(1/2)*((-1i/(4*(a^4*d^2 + b^4*d^2 + a*b^3*d^2*4i - a^3*b 
*d^2*4i - 6*a^2*b^2*d^2)))^(1/2)*(tan(c + d*x)^(1/2)*(3200*a^22*b^28*d^7 + 
 33920*a^24*b^26*d^7 + 158208*a^26*b^24*d^7 + 425536*a^28*b^22*d^7 + 72729 
6*a^30*b^20*d^7 + 820672*a^32*b^18*d^7 + 615936*a^34*b^16*d^7 + 304256*a^3 
6*b^14*d^7 + 98432*a^38*b^12*d^7 + 22016*a^40*b^10*d^7 + 3072*a^42*b^8*d^7 
 - 704*a^44*b^6*d^7 - 512*a^46*b^4*d^7 - 64*a^48*b^2*d^7) - (-1i/(4*(a^4*d 
^2 + b^4*d^2 + a*b^3*d^2*4i - a^3*b*d^2*4i - 6*a^2*b^2*d^2)))^(1/2)*(1280* 
a^24*b^28*d^8 + 13824*a^26*b^26*d^8 + 66944*a^28*b^24*d^8 + 190848*a^30*b^ 
22*d^8 + 352640*a^32*b^20*d^8 + 435840*a^34*b^18*d^8 + 354048*a^36*b^16*d^ 
8 + 169728*a^38*b^14*d^8 + 24576*a^40*b^12*d^8 - 21760*a^42*b^10*d^8 - 134 
40*a^44*b^8*d^8 - 2176*a^46*b^6*d^8 + 384*a^48*b^4*d^8 + 128*a^50*b^2*d^8 
+ tan(c + d*x)^(1/2)*(-1i/(4*(a^4*d^2 + b^4*d^2 + a*b^3*d^2*4i - a^3*b*d^2 
*4i - 6*a^2*b^2*d^2)))^(1/2)*(512*a^27*b^27*d^9 + 5120*a^29*b^25*d^9 + 225 
28*a^31*b^23*d^9 + 56320*a^33*b^21*d^9 + 84480*a^35*b^19*d^9 + 67584*a^37* 
b^17*d^9 - 67584*a^41*b^13*d^9 - 84480*a^43*b^11*d^9 - 56320*a^45*b^9*d^9 
- 22528*a^47*b^7*d^9 - 5120*a^49*b^5*d^9 - 512*a^51*b^3*d^9))) - 800*a^...
 

Reduce [F]

\[ \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx=\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )^{5} b^{2}+2 \tan \left (d x +c \right )^{4} a b +\tan \left (d x +c \right )^{3} a^{2}}d x \] Input:

int(1/tan(d*x+c)^(5/2)/(a+b*tan(d*x+c))^2,x)
 

Output:

int(sqrt(tan(c + d*x))/(tan(c + d*x)**5*b**2 + 2*tan(c + d*x)**4*a*b + tan 
(c + d*x)**3*a**2),x)