\(\int \frac {(a+b \tan (c+d x))^{5/2}}{\tan ^{\frac {9}{2}}(c+d x)} \, dx\) [630]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 270 \[ \int \frac {(a+b \tan (c+d x))^{5/2}}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\frac {i (i a-b)^{5/2} \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {i (i a+b)^{5/2} \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (7 a^2-9 b^2\right ) \sqrt {a+b \tan (c+d x)}}{21 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 b \left (49 a^2-3 b^2\right ) \sqrt {a+b \tan (c+d x)}}{21 a d \sqrt {\tan (c+d x)}} \] Output:

I*(I*a-b)^(5/2)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/ 
2))/d+I*(I*a+b)^(5/2)*arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+ 
c))^(1/2))/d-2/7*a^2*(a+b*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(7/2)-6/7*a*b*(a+ 
b*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(5/2)+2/21*(7*a^2-9*b^2)*(a+b*tan(d*x+c)) 
^(1/2)/d/tan(d*x+c)^(3/2)+2/21*b*(49*a^2-3*b^2)*(a+b*tan(d*x+c))^(1/2)/a/d 
/tan(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 2.38 (sec) , antiderivative size = 249, normalized size of antiderivative = 0.92 \[ \int \frac {(a+b \tan (c+d x))^{5/2}}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {-42 (-1)^{3/4} (-a+i b)^{5/2} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )+42 (-1)^{3/4} (a+i b)^{5/2} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )+\frac {\sec ^3(c+d x) \left (a \left (2 a^2+9 b^2\right ) \cos (c+d x)+\left (10 a^3-9 a b^2\right ) \cos (3 (c+d x))+2 b \left (-40 a^2+3 b^2+\left (58 a^2-3 b^2\right ) \cos (2 (c+d x))\right ) \sin (c+d x)\right ) \sqrt {a+b \tan (c+d x)}}{a \tan ^{\frac {7}{2}}(c+d x)}}{42 d} \] Input:

Integrate[(a + b*Tan[c + d*x])^(5/2)/Tan[c + d*x]^(9/2),x]
 

Output:

-1/42*(-42*(-1)^(3/4)*(-a + I*b)^(5/2)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*S 
qrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]] + 42*(-1)^(3/4)*(a + I*b)^(5/ 
2)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + 
 d*x]]] + (Sec[c + d*x]^3*(a*(2*a^2 + 9*b^2)*Cos[c + d*x] + (10*a^3 - 9*a* 
b^2)*Cos[3*(c + d*x)] + 2*b*(-40*a^2 + 3*b^2 + (58*a^2 - 3*b^2)*Cos[2*(c + 
 d*x)])*Sin[c + d*x])*Sqrt[a + b*Tan[c + d*x]])/(a*Tan[c + d*x]^(7/2)))/d
 

Rubi [A] (verified)

Time = 2.06 (sec) , antiderivative size = 308, normalized size of antiderivative = 1.14, number of steps used = 20, number of rules used = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.760, Rules used = {3042, 4048, 27, 3042, 4132, 27, 3042, 4132, 27, 3042, 4132, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \tan (c+d x))^{5/2}}{\tan ^{\frac {9}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \tan (c+d x))^{5/2}}{\tan (c+d x)^{9/2}}dx\)

\(\Big \downarrow \) 4048

\(\displaystyle \frac {2}{7} \int \frac {15 b a^2-7 \left (a^2-3 b^2\right ) \tan (c+d x) a-b \left (6 a^2-7 b^2\right ) \tan ^2(c+d x)}{2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \int \frac {15 b a^2-7 \left (a^2-3 b^2\right ) \tan (c+d x) a-b \left (6 a^2-7 b^2\right ) \tan ^2(c+d x)}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \int \frac {15 b a^2-7 \left (a^2-3 b^2\right ) \tan (c+d x) a-b \left (6 a^2-7 b^2\right ) \tan (c+d x)^2}{\tan (c+d x)^{7/2} \sqrt {a+b \tan (c+d x)}}dx-\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4132

\(\displaystyle \frac {1}{7} \left (-\frac {2 \int \frac {5 \left (12 b^2 \tan ^2(c+d x) a^2+\left (7 a^2-9 b^2\right ) a^2+7 b \left (3 a^2-b^2\right ) \tan (c+d x) a\right )}{2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx}{5 a}-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (-\frac {\int \frac {12 b^2 \tan ^2(c+d x) a^2+\left (7 a^2-9 b^2\right ) a^2+7 b \left (3 a^2-b^2\right ) \tan (c+d x) a}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (-\frac {\int \frac {12 b^2 \tan (c+d x)^2 a^2+\left (7 a^2-9 b^2\right ) a^2+7 b \left (3 a^2-b^2\right ) \tan (c+d x) a}{\tan (c+d x)^{5/2} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4132

\(\displaystyle \frac {1}{7} \left (-\frac {-\frac {2 \int -\frac {-21 \left (a^2-3 b^2\right ) \tan (c+d x) a^3-2 b \left (7 a^2-9 b^2\right ) \tan ^2(c+d x) a^2+b \left (49 a^2-3 b^2\right ) a^2}{2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx}{3 a}-\frac {2 a \left (7 a^2-9 b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{a}-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (-\frac {\frac {\int \frac {-21 \left (a^2-3 b^2\right ) \tan (c+d x) a^3-2 b \left (7 a^2-9 b^2\right ) \tan ^2(c+d x) a^2+b \left (49 a^2-3 b^2\right ) a^2}{\tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx}{3 a}-\frac {2 a \left (7 a^2-9 b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{a}-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (-\frac {\frac {\int \frac {-21 \left (a^2-3 b^2\right ) \tan (c+d x) a^3-2 b \left (7 a^2-9 b^2\right ) \tan (c+d x)^2 a^2+b \left (49 a^2-3 b^2\right ) a^2}{\tan (c+d x)^{3/2} \sqrt {a+b \tan (c+d x)}}dx}{3 a}-\frac {2 a \left (7 a^2-9 b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{a}-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4132

\(\displaystyle \frac {1}{7} \left (-\frac {\frac {-\frac {2 \int \frac {21 \left (\left (a^2-3 b^2\right ) a^4+b \left (3 a^2-b^2\right ) \tan (c+d x) a^3\right )}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {2 a b \left (49 a^2-3 b^2\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 a \left (7 a^2-9 b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{a}-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (-\frac {\frac {-\frac {21 \int \frac {\left (a^2-3 b^2\right ) a^4+b \left (3 a^2-b^2\right ) \tan (c+d x) a^3}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {2 a b \left (49 a^2-3 b^2\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 a \left (7 a^2-9 b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{a}-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (-\frac {\frac {-\frac {21 \int \frac {\left (a^2-3 b^2\right ) a^4+b \left (3 a^2-b^2\right ) \tan (c+d x) a^3}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {2 a b \left (49 a^2-3 b^2\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 a \left (7 a^2-9 b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{a}-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4099

\(\displaystyle -\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}-\frac {-\frac {2 a \left (7 a^2-9 b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {-\frac {2 a b \left (49 a^2-3 b^2\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {21 \left (\frac {1}{2} a^3 (a-i b)^3 \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^3 (a+i b)^3 \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a}}{3 a}}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}-\frac {-\frac {2 a \left (7 a^2-9 b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {-\frac {2 a b \left (49 a^2-3 b^2\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {21 \left (\frac {1}{2} a^3 (a-i b)^3 \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^3 (a+i b)^3 \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a}}{3 a}}{a}\right )\)

\(\Big \downarrow \) 4098

\(\displaystyle -\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}-\frac {-\frac {2 a \left (7 a^2-9 b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {-\frac {2 a b \left (49 a^2-3 b^2\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {21 \left (\frac {a^3 (a-i b)^3 \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+\frac {a^3 (a+i b)^3 \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}\right )}{a}}{3 a}}{a}\right )\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}-\frac {-\frac {2 a \left (7 a^2-9 b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {-\frac {2 a b \left (49 a^2-3 b^2\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {21 \left (\frac {a^3 (a-i b)^3 \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^3 (a+i b)^3 \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}\right )}{a}}{3 a}}{a}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}-\frac {-\frac {2 a \left (7 a^2-9 b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {-\frac {2 a b \left (49 a^2-3 b^2\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {21 \left (\frac {a^3 (a-i b)^3 \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^3 (a+i b)^3 \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}\right )}{a}}{3 a}}{a}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {2 a^2 \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (-\frac {6 a b \sqrt {a+b \tan (c+d x)}}{d \tan ^{\frac {5}{2}}(c+d x)}-\frac {-\frac {2 a \left (7 a^2-9 b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {-\frac {2 a b \left (49 a^2-3 b^2\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {21 \left (\frac {a^3 (a+i b)^3 \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {a^3 (a-i b)^3 \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )}{a}}{3 a}}{a}\right )\)

Input:

Int[(a + b*Tan[c + d*x])^(5/2)/Tan[c + d*x]^(9/2),x]
 

Output:

(-2*a^2*Sqrt[a + b*Tan[c + d*x]])/(7*d*Tan[c + d*x]^(7/2)) + ((-6*a*b*Sqrt 
[a + b*Tan[c + d*x]])/(d*Tan[c + d*x]^(5/2)) - ((-2*a*(7*a^2 - 9*b^2)*Sqrt 
[a + b*Tan[c + d*x]])/(3*d*Tan[c + d*x]^(3/2)) + ((-21*((a^3*(a + I*b)^3*A 
rcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[ 
I*a - b]*d) + (a^3*(a - I*b)^3*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/ 
Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a + b]*d)))/a - (2*a*b*(49*a^2 - 3*b^2) 
*Sqrt[a + b*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]))/(3*a))/a)/7
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4048
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)^2*(a + b*Tan[e + f*x])^(m 
 - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1 
/(d*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + 
f*x])^(n + 1)*Simp[a^2*d*(b*d*(m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c 
*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3*a*b^2*d) 
*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*( 
n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 2] && LtQ 
[n, -1] && IntegerQ[2*m]
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 
Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 1.21 (sec) , antiderivative size = 1309621, normalized size of antiderivative = 4850.45

\[\text {output too large to display}\]

Input:

int((a+b*tan(d*x+c))^(5/2)/tan(d*x+c)^(9/2),x)
 

Output:

result too large to display
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5085 vs. \(2 (218) = 436\).

Time = 0.66 (sec) , antiderivative size = 5085, normalized size of antiderivative = 18.83 \[ \int \frac {(a+b \tan (c+d x))^{5/2}}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+b*tan(d*x+c))^(5/2)/tan(d*x+c)^(9/2),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \tan (c+d x))^{5/2}}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+b*tan(d*x+c))**(5/2)/tan(d*x+c)**(9/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+b \tan (c+d x))^{5/2}}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\tan \left (d x + c\right )^{\frac {9}{2}}} \,d x } \] Input:

integrate((a+b*tan(d*x+c))^(5/2)/tan(d*x+c)^(9/2),x, algorithm="maxima")
 

Output:

integrate((b*tan(d*x + c) + a)^(5/2)/tan(d*x + c)^(9/2), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+b \tan (c+d x))^{5/2}}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+b*tan(d*x+c))^(5/2)/tan(d*x+c)^(9/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \tan (c+d x))^{5/2}}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\int \frac {{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{5/2}}{{\mathrm {tan}\left (c+d\,x\right )}^{9/2}} \,d x \] Input:

int((a + b*tan(c + d*x))^(5/2)/tan(c + d*x)^(9/2),x)
 

Output:

int((a + b*tan(c + d*x))^(5/2)/tan(c + d*x)^(9/2), x)
 

Reduce [F]

\[ \int \frac {(a+b \tan (c+d x))^{5/2}}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\frac {-28 \sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}\, \tan \left (d x +c \right )^{3} a^{2} b +36 \sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}\, \tan \left (d x +c \right )^{3} b^{3}+14 \sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}\, \tan \left (d x +c \right )^{2} a^{3}-18 \sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}\, \tan \left (d x +c \right )^{2} a \,b^{2}-18 \sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}\, \tan \left (d x +c \right ) a^{2} b -6 \sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}\, a^{3}-63 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}}{\tan \left (d x +c \right )^{3} b +\tan \left (d x +c \right )^{2} a}d x \right ) \tan \left (d x +c \right )^{4} a^{3} b d +21 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}}{\tan \left (d x +c \right )^{3} b +\tan \left (d x +c \right )^{2} a}d x \right ) \tan \left (d x +c \right )^{4} a \,b^{3} d +21 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}}{\tan \left (d x +c \right )^{2} b +\tan \left (d x +c \right ) a}d x \right ) \tan \left (d x +c \right )^{4} a^{4} d -63 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}}{\tan \left (d x +c \right )^{2} b +\tan \left (d x +c \right ) a}d x \right ) \tan \left (d x +c \right )^{4} a^{2} b^{2} d}{21 \tan \left (d x +c \right )^{4} a d} \] Input:

int((a+b*tan(d*x+c))^(5/2)/tan(d*x+c)^(9/2),x)
 

Output:

( - 28*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*b + a)*tan(c + d*x)**3*a**2*b 
+ 36*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*b + a)*tan(c + d*x)**3*b**3 + 14 
*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*b + a)*tan(c + d*x)**2*a**3 - 18*sqr 
t(tan(c + d*x))*sqrt(tan(c + d*x)*b + a)*tan(c + d*x)**2*a*b**2 - 18*sqrt( 
tan(c + d*x))*sqrt(tan(c + d*x)*b + a)*tan(c + d*x)*a**2*b - 6*sqrt(tan(c 
+ d*x))*sqrt(tan(c + d*x)*b + a)*a**3 - 63*int((sqrt(tan(c + d*x))*sqrt(ta 
n(c + d*x)*b + a))/(tan(c + d*x)**3*b + tan(c + d*x)**2*a),x)*tan(c + d*x) 
**4*a**3*b*d + 21*int((sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*b + a))/(tan(c 
 + d*x)**3*b + tan(c + d*x)**2*a),x)*tan(c + d*x)**4*a*b**3*d + 21*int((sq 
rt(tan(c + d*x))*sqrt(tan(c + d*x)*b + a))/(tan(c + d*x)**2*b + tan(c + d* 
x)*a),x)*tan(c + d*x)**4*a**4*d - 63*int((sqrt(tan(c + d*x))*sqrt(tan(c + 
d*x)*b + a))/(tan(c + d*x)**2*b + tan(c + d*x)*a),x)*tan(c + d*x)**4*a**2* 
b**2*d)/(21*tan(c + d*x)**4*a*d)