\(\int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx\) [651]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 211 \[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=-\frac {i \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a-b)^{5/2} d}+\frac {i \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a+b)^{5/2} d}-\frac {2 b \sqrt {\tan (c+d x)}}{3 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{3 a \left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}} \] Output:

-I*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))/(I*a-b)^( 
5/2)/d+I*arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))/(I 
*a+b)^(5/2)/d-2/3*b*tan(d*x+c)^(1/2)/(a^2+b^2)/d/(a+b*tan(d*x+c))^(3/2)-2/ 
3*b*(5*a^2-b^2)*tan(d*x+c)^(1/2)/a/(a^2+b^2)^2/d/(a+b*tan(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 2.51 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.92 \[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=\frac {-\frac {3 \sqrt [4]{-1} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(-a+i b)^{5/2}}+\frac {3 \sqrt [4]{-1} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(a+i b)^{5/2}}+\frac {2 b \sqrt {\tan (c+d x)} \left (-6 a^3+\left (-5 a^2 b+b^3\right ) \tan (c+d x)\right )}{a \left (a^2+b^2\right )^2 (a+b \tan (c+d x))^{3/2}}}{3 d} \] Input:

Integrate[Sqrt[Tan[c + d*x]]/(a + b*Tan[c + d*x])^(5/2),x]
 

Output:

((-3*(-1)^(1/4)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt 
[a + b*Tan[c + d*x]]])/(-a + I*b)^(5/2) + (3*(-1)^(1/4)*ArcTan[((-1)^(1/4) 
*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(a + I*b)^(5 
/2) + (2*b*Sqrt[Tan[c + d*x]]*(-6*a^3 + (-5*a^2*b + b^3)*Tan[c + d*x]))/(a 
*(a^2 + b^2)^2*(a + b*Tan[c + d*x])^(3/2)))/(3*d)
 

Rubi [A] (verified)

Time = 1.22 (sec) , antiderivative size = 258, normalized size of antiderivative = 1.22, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3042, 4051, 27, 3042, 4132, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4051

\(\displaystyle -\frac {2 \int -\frac {-2 b \tan ^2(c+d x)+3 a \tan (c+d x)+b}{2 \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 \left (a^2+b^2\right )}-\frac {2 b \sqrt {\tan (c+d x)}}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {-2 b \tan ^2(c+d x)+3 a \tan (c+d x)+b}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 \left (a^2+b^2\right )}-\frac {2 b \sqrt {\tan (c+d x)}}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {-2 b \tan (c+d x)^2+3 a \tan (c+d x)+b}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 \left (a^2+b^2\right )}-\frac {2 b \sqrt {\tan (c+d x)}}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4132

\(\displaystyle \frac {\frac {2 \int \frac {3 \left (2 b a^2+\left (a^2-b^2\right ) \tan (c+d x) a\right )}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 \left (a^2+b^2\right )}-\frac {2 b \sqrt {\tan (c+d x)}}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {3 \int \frac {2 b a^2+\left (a^2-b^2\right ) \tan (c+d x) a}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 \left (a^2+b^2\right )}-\frac {2 b \sqrt {\tan (c+d x)}}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 \int \frac {2 b a^2+\left (a^2-b^2\right ) \tan (c+d x) a}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 \left (a^2+b^2\right )}-\frac {2 b \sqrt {\tan (c+d x)}}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4099

\(\displaystyle -\frac {2 b \sqrt {\tan (c+d x)}}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {1}{2} i a (a-i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} i a (a+i b)^2 \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{3 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 b \sqrt {\tan (c+d x)}}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {1}{2} i a (a-i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} i a (a+i b)^2 \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{3 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 4098

\(\displaystyle -\frac {2 b \sqrt {\tan (c+d x)}}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {i a (a-i b)^2 \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}-\frac {i a (a+i b)^2 \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}\right )}{a \left (a^2+b^2\right )}}{3 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {2 b \sqrt {\tan (c+d x)}}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {i a (a-i b)^2 \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}-\frac {i a (a+i b)^2 \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}\right )}{a \left (a^2+b^2\right )}}{3 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {2 b \sqrt {\tan (c+d x)}}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {i a (a-i b)^2 \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}-\frac {i a (a+i b)^2 \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}\right )}{a \left (a^2+b^2\right )}}{3 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {2 b \sqrt {\tan (c+d x)}}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {2 b \left (5 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {i a (a-i b)^2 \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}-\frac {i a (a+i b)^2 \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )}{a \left (a^2+b^2\right )}}{3 \left (a^2+b^2\right )}\)

Input:

Int[Sqrt[Tan[c + d*x]]/(a + b*Tan[c + d*x])^(5/2),x]
 

Output:

(-2*b*Sqrt[Tan[c + d*x]])/(3*(a^2 + b^2)*d*(a + b*Tan[c + d*x])^(3/2)) + ( 
(3*((I*a*(a - I*b)^2*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b* 
Tan[c + d*x]]])/(Sqrt[I*a - b]*d) - (I*a*(a + I*b)^2*ArcTanh[(Sqrt[I*a + b 
]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a + b]*d)))/(a*(a 
^2 + b^2)) - (2*b*(5*a^2 - b^2)*Sqrt[Tan[c + d*x]])/(a*(a^2 + b^2)*d*Sqrt[ 
a + b*Tan[c + d*x]]))/(3*(a^2 + b^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4051
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a + b*Tan[e + f*x])^(m + 1)*((c + 
d*Tan[e + f*x])^n/(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(a^2 + b^2 
))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*c 
*(m + 1) - b*d*n - (b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(m + n + 1)*Tan[e 
 + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] 
&& NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && GtQ[n, 0] && Int 
egerQ[2*m]
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 
Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 1.53 (sec) , antiderivative size = 1487734, normalized size of antiderivative = 7050.87

\[\text {output too large to display}\]

Input:

int(tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(5/2),x)
 

Output:

result too large to display
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 11374 vs. \(2 (171) = 342\).

Time = 2.18 (sec) , antiderivative size = 11374, normalized size of antiderivative = 53.91 \[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Too large to display} \] Input:

integrate(tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\tan {\left (c + d x \right )}}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(tan(d*x+c)**(1/2)/(a+b*tan(d*x+c))**(5/2),x)
 

Output:

Integral(sqrt(tan(c + d*x))/(a + b*tan(c + d*x))**(5/2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=\int { \frac {\sqrt {\tan \left (d x + c\right )}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(tan(d*x + c))/(b*tan(d*x + c) + a)^(5/2), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{5/2}} \,d x \] Input:

int(tan(c + d*x)^(1/2)/(a + b*tan(c + d*x))^(5/2),x)
 

Output:

int(tan(c + d*x)^(1/2)/(a + b*tan(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}}{\tan \left (d x +c \right )^{3} b^{3}+3 \tan \left (d x +c \right )^{2} a \,b^{2}+3 \tan \left (d x +c \right ) a^{2} b +a^{3}}d x \] Input:

int(tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(5/2),x)
 

Output:

int((sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*b + a))/(tan(c + d*x)**3*b**3 + 
3*tan(c + d*x)**2*a*b**2 + 3*tan(c + d*x)*a**2*b + a**3),x)