\(\int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\cot (c+d x)}} \, dx\) [761]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 216 \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\cot (c+d x)}} \, dx=-\frac {3 (-1)^{3/4} a^{3/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {(2+2 i) a^{3/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {a^2}{d \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}+\frac {i a^2}{d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}} \] Output:

-3*(-1)^(3/4)*a^(3/2)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*ta 
n(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d-(2+2*I)*a^(3/2)*arcta 
nh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/ 
2)*tan(d*x+c)^(1/2)/d-a^2/d/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(1/2)+I*a^ 
2/d/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 3.00 (sec) , antiderivative size = 221, normalized size of antiderivative = 1.02 \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\cot (c+d x)}} \, dx=\frac {i \left (3 a^{5/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) (i+\cot (c+d x))+a^2 \sqrt {1+i \tan (c+d x)} \left ((i+\cot (c+d x)) \sqrt {i a \tan (c+d x)}-2 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \cot (c+d x) \sqrt {a+i a \tan (c+d x)}\right )\right )}{d \cot ^{\frac {3}{2}}(c+d x) \sqrt {1+i \tan (c+d x)} \sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \] Input:

Integrate[(a + I*a*Tan[c + d*x])^(3/2)/Sqrt[Cot[c + d*x]],x]
 

Output:

(I*(3*a^(5/2)*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*(I + Cot[c + d*x]) + 
 a^2*Sqrt[1 + I*Tan[c + d*x]]*((I + Cot[c + d*x])*Sqrt[I*a*Tan[c + d*x]] - 
 2*Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d 
*x]]]*Cot[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])))/(d*Cot[c + d*x]^(3/2)*Sqr 
t[1 + I*Tan[c + d*x]]*Sqrt[I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])
 

Rubi [A] (verified)

Time = 1.24 (sec) , antiderivative size = 207, normalized size of antiderivative = 0.96, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.536, Rules used = {3042, 4729, 3042, 4039, 27, 3042, 4078, 3042, 4084, 3042, 4027, 218, 4082, 65, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\cot (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\cot (c+d x)}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \sqrt {\tan (c+d x)} (i \tan (c+d x) a+a)^{3/2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \sqrt {\tan (c+d x)} (i \tan (c+d x) a+a)^{3/2}dx\)

\(\Big \downarrow \) 4039

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (a \int \frac {\sqrt {\tan (c+d x)} (3 i \tan (c+d x) a+5 a)}{2 \sqrt {i \tan (c+d x) a+a}}dx-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} a \int \frac {\sqrt {\tan (c+d x)} (3 i \tan (c+d x) a+5 a)}{\sqrt {i \tan (c+d x) a+a}}dx-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} a \int \frac {\sqrt {\tan (c+d x)} (3 i \tan (c+d x) a+5 a)}{\sqrt {i \tan (c+d x) a+a}}dx-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4078

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} a \left (\frac {2 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (i a^2-3 a^2 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx}{a^2}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} a \left (\frac {2 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (i a^2-3 a^2 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx}{a^2}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4084

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} a \left (\frac {2 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a^2 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-3 i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{a^2}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} a \left (\frac {2 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a^2 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-3 i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{a^2}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} a \left (\frac {2 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\frac {8 a^4 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-3 i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{a^2}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} a \left (\frac {2 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\frac {(4+4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-3 i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{a^2}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4082

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} a \left (\frac {2 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\frac {(4+4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {3 i a^3 \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}d\tan (c+d x)}{d}}{a^2}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 65

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} a \left (\frac {2 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\frac {(4+4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {6 i a^3 \int \frac {1}{1-\frac {i a \tan (c+d x)}{i \tan (c+d x) a+a}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}}{a^2}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} a \left (\frac {2 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\frac {6 (-1)^{3/4} a^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(4+4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{a^2}\right )-\frac {a^2 \tan ^{\frac {3}{2}}(c+d x)}{d \sqrt {a+i a \tan (c+d x)}}\right )\)

Input:

Int[(a + I*a*Tan[c + d*x])^(3/2)/Sqrt[Cot[c + d*x]],x]
 

Output:

Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-((a^2*Tan[c + d*x]^(3/2))/(d*Sqrt[ 
a + I*a*Tan[c + d*x]])) + (a*(-(((6*(-1)^(3/4)*a^(5/2)*ArcTan[((-1)^(3/4)* 
Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + ((4 + 4*I)*a^ 
(5/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d* 
x]]])/d)/a^2) + ((2*I)*a*Sqrt[Tan[c + d*x]])/(d*Sqrt[a + I*a*Tan[c + d*x]] 
)))/2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4039
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c + 
 d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Simp[a/(d*(m + n - 1)) 
Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[b*c*(m - 2) + 
a*d*(m + 2*n) + (a*c*(m - 2) + b*d*(3*m + 2*n - 4))*Tan[e + f*x], x], x], x 
] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 
 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 1] && NeQ[m + n - 1, 0] 
 && (IntegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4078
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-(A*b - a*B))*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(2*a*f*m)), 
 x] + Simp[1/(2*a^2*m)   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f* 
x])^(n - 1)*Simp[A*(a*c*m + b*d*n) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a 
*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] 
&& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]
 

rule 4082
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(B/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x]], 
x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 + b^2, 0] && EqQ[A*b + a*B, 0]
 

rule 4084
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b + a*B)/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x], x] 
 - Simp[B/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[ 
e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - 
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
Maple [A] (verified)

Time = 0.43 (sec) , antiderivative size = 313, normalized size of antiderivative = 1.45

method result size
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a +2 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+2 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +4 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \right )}{2 d \sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \left (1+i \tan \left (d x +c \right )\right ) \tan \left (d x +c \right ) \sqrt {i a}\, \sqrt {-i a}}\) \(313\)
default \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a +2 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+2 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +4 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \right )}{2 d \sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \left (1+i \tan \left (d x +c \right )\right ) \tan \left (d x +c \right ) \sqrt {i a}\, \sqrt {-i a}}\) \(313\)

Input:

int((a+I*a*tan(d*x+c))^(3/2)/cot(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/2/d*(a*(1+I*tan(d*x+c)))^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(3* 
I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^( 
1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a+2*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1 
/2)*(I*a)^(1/2)*(-I*a)^(1/2)+2*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan 
(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*(I*a)^ 
(1/2)*a+4*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2) 
*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a)/(1/tan(d*x+c))^(1/2)/(1+I*tan 
(d*x+c))/tan(d*x+c)/(I*a)^(1/2)/(-I*a)^(1/2)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 637 vs. \(2 (166) = 332\).

Time = 0.10 (sec) , antiderivative size = 637, normalized size of antiderivative = 2.95 \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\cot (c+d x)}} \, dx =\text {Too large to display} \] Input:

integrate((a+I*a*tan(d*x+c))^(3/2)/cot(d*x+c)^(1/2),x, algorithm="fricas")
 

Output:

1/4*(4*sqrt(2)*(a*e^(3*I*d*x + 3*I*c) - a*e^(I*d*x + I*c))*sqrt(a/(e^(2*I* 
d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 
 1)) - (d*e^(2*I*d*x + 2*I*c) + d)*sqrt(9*I*a^3/d^2)*log(-16/3*(2*sqrt(2)* 
(I*d*e^(3*I*d*x + 3*I*c) - I*d*e^(I*d*x + I*c))*sqrt(9*I*a^3/d^2)*sqrt(a/( 
e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2 
*I*c) - 1)) + 9*a^2*e^(2*I*d*x + 2*I*c) - 3*a^2)*e^(-2*I*d*x - 2*I*c)) + ( 
d*e^(2*I*d*x + 2*I*c) + d)*sqrt(9*I*a^3/d^2)*log(-16/3*(2*sqrt(2)*(-I*d*e^ 
(3*I*d*x + 3*I*c) + I*d*e^(I*d*x + I*c))*sqrt(9*I*a^3/d^2)*sqrt(a/(e^(2*I* 
d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 
 1)) + 9*a^2*e^(2*I*d*x + 2*I*c) - 3*a^2)*e^(-2*I*d*x - 2*I*c)) - (d*e^(2* 
I*d*x + 2*I*c) + d)*sqrt(32*I*a^3/d^2)*log(1/2*(sqrt(2)*(d*e^(2*I*d*x + 2* 
I*c) - d)*sqrt(32*I*a^3/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^( 
2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)) + 8*I*a^2*e^(I*d*x + I*c) 
)*e^(-I*d*x - I*c)/a) + (d*e^(2*I*d*x + 2*I*c) + d)*sqrt(32*I*a^3/d^2)*log 
(-1/2*(sqrt(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(32*I*a^3/d^2)*sqrt(a/(e^(2 
*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c 
) - 1)) - 8*I*a^2*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a))/(d*e^(2*I*d*x + 2* 
I*c) + d)
 

Sympy [F]

\[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\cot (c+d x)}} \, dx=\int \frac {\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}}}{\sqrt {\cot {\left (c + d x \right )}}}\, dx \] Input:

integrate((a+I*a*tan(d*x+c))**(3/2)/cot(d*x+c)**(1/2),x)
 

Output:

Integral((I*a*(tan(c + d*x) - I))**(3/2)/sqrt(cot(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\cot (c+d x)}} \, dx=\int { \frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sqrt {\cot \left (d x + c\right )}} \,d x } \] Input:

integrate((a+I*a*tan(d*x+c))^(3/2)/cot(d*x+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate((I*a*tan(d*x + c) + a)^(3/2)/sqrt(cot(d*x + c)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\cot (c+d x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+I*a*tan(d*x+c))^(3/2)/cot(d*x+c)^(1/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\cot (c+d x)}} \, dx=\int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}{\sqrt {\mathrm {cot}\left (c+d\,x\right )}} \,d x \] Input:

int((a + a*tan(c + d*x)*1i)^(3/2)/cot(c + d*x)^(1/2),x)
 

Output:

int((a + a*tan(c + d*x)*1i)^(3/2)/cot(c + d*x)^(1/2), x)
 

Reduce [F]

\[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\cot (c+d x)}} \, dx=\sqrt {a}\, a \left (\left (\int \frac {\sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \tan \left (d x +c \right )}{\cot \left (d x +c \right )}d x \right ) i +\int \frac {\sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}}{\cot \left (d x +c \right )}d x \right ) \] Input:

int((a+I*a*tan(d*x+c))^(3/2)/cot(d*x+c)^(1/2),x)
 

Output:

sqrt(a)*a*(int((sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x))*tan(c + d*x))/ 
cot(c + d*x),x)*i + int((sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x)))/cot( 
c + d*x),x))