\(\int \cot ^{\frac {7}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx\) [763]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 176 \[ \int \cot ^{\frac {7}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=-\frac {(4+4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {4 a^2 \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 i a \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}-\frac {2 \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}{5 d} \] Output:

(-4-4*I)*a^(5/2)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c)) 
^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d+4*a^2*cot(d*x+c)^(1/2)*(a+I*a* 
tan(d*x+c))^(1/2)/d-2/3*I*a*cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2)/d-2/ 
5*cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(5/2)/d
 

Mathematica [A] (verified)

Time = 2.74 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.91 \[ \int \cot ^{\frac {7}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\frac {16 a^2 e^{i (c+d x)} \left (e^{i (c+d x)} \left (15-35 e^{2 i (c+d x)}+26 e^{4 i (c+d x)}\right )-15 \left (-1+e^{2 i (c+d x)}\right )^{5/2} \text {arctanh}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )\right ) \cos ^2(c+d x) \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{15 d \left (-1+e^{4 i (c+d x)}\right )^2} \] Input:

Integrate[Cot[c + d*x]^(7/2)*(a + I*a*Tan[c + d*x])^(5/2),x]
 

Output:

(16*a^2*E^(I*(c + d*x))*(E^(I*(c + d*x))*(15 - 35*E^((2*I)*(c + d*x)) + 26 
*E^((4*I)*(c + d*x))) - 15*(-1 + E^((2*I)*(c + d*x)))^(5/2)*ArcTanh[E^(I*( 
c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]])*Cos[c + d*x]^2*Sqrt[Cot[c + d*x 
]]*Sqrt[a + I*a*Tan[c + d*x]])/(15*d*(-1 + E^((4*I)*(c + d*x)))^2)
 

Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.05, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.393, Rules used = {3042, 4729, 3042, 4031, 3042, 4028, 3042, 4028, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^{\frac {7}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot (c+d x)^{7/2} (a+i a \tan (c+d x))^{5/2}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {(i \tan (c+d x) a+a)^{5/2}}{\tan ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {(i \tan (c+d x) a+a)^{5/2}}{\tan (c+d x)^{7/2}}dx\)

\(\Big \downarrow \) 4031

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (i \int \frac {(i \tan (c+d x) a+a)^{5/2}}{\tan ^{\frac {5}{2}}(c+d x)}dx-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (i \int \frac {(i \tan (c+d x) a+a)^{5/2}}{\tan (c+d x)^{5/2}}dx-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4028

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (i \left (2 i a \int \frac {(i \tan (c+d x) a+a)^{3/2}}{\tan ^{\frac {3}{2}}(c+d x)}dx-\frac {2 a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (i \left (2 i a \int \frac {(i \tan (c+d x) a+a)^{3/2}}{\tan (c+d x)^{3/2}}dx-\frac {2 a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4028

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (i \left (2 i a \left (2 i a \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (i \left (2 i a \left (2 i a \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (i \left (2 i a \left (\frac {4 a^3 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (i \left (2 i a \left (\frac {(2+2 i) a^{3/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )\)

Input:

Int[Cot[c + d*x]^(7/2)*(a + I*a*Tan[c + d*x])^(5/2),x]
 

Output:

Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((-2*(a + I*a*Tan[c + d*x])^(5/2))/( 
5*d*Tan[c + d*x]^(5/2)) + I*((-2*a*(a + I*a*Tan[c + d*x])^(3/2))/(3*d*Tan[ 
c + d*x]^(3/2)) + (2*I)*a*(((2 + 2*I)*a^(3/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqr 
t[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2*a*Sqrt[a + I*a*Tan[c 
+ d*x]])/(d*Sqrt[Tan[c + d*x]]))))
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4028
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*b*(a + b*Tan[e + f*x])^(m - 1)*((c + 
 d*Tan[e + f*x])^(n + 1)/(f*(m - 1)*(a*c - b*d))), x] + Simp[2*(a^2/(a*c - 
b*d))   Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1), x], 
x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0 
] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && GtQ[m, 1/2]
 

rule 4031
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-d)*(a + b*Tan[e + f*x])^m*((c + d*Ta 
n[e + f*x])^(n + 1)/(f*m*(c^2 + d^2))), x] + Simp[a/(a*c - b*d)   Int[(a + 
b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d 
, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^ 
2, 0] && EqQ[m + n + 1, 0] &&  !LtQ[m, -1]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 421 vs. \(2 (143 ) = 286\).

Time = 0.58 (sec) , antiderivative size = 422, normalized size of antiderivative = 2.40

method result size
derivativedivides \(\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {7}{2}} \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (15 i \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \tan \left (d x +c \right )^{3}+15 \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \tan \left (d x +c \right )^{3}+76 \tan \left (d x +c \right )^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+60 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )^{3}-22 i \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}-6 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{15 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(422\)
default \(\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {7}{2}} \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (15 i \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \tan \left (d x +c \right )^{3}+15 \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \tan \left (d x +c \right )^{3}+76 \tan \left (d x +c \right )^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+60 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )^{3}-22 i \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}-6 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{15 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(422\)

Input:

int(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/15/d*(1/tan(d*x+c))^(7/2)*tan(d*x+c)*(a*(1+I*tan(d*x+c)))^(1/2)*a^2*(15* 
I*(I*a)^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c))) 
^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^3+15*ln(-( 
-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan( 
d*x+c))/(tan(d*x+c)+I))*(I*a)^(1/2)*2^(1/2)*a*tan(d*x+c)^3+76*tan(d*x+c)^2 
*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)+60*ln(1/2* 
(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/( 
I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)^3-22*I*tan(d*x+c)*(a*tan(d*x+c)*(1+I 
*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)-6*(a*tan(d*x+c)*(1+I*tan(d*x+ 
c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2) 
/(I*a)^(1/2)/(-I*a)^(1/2)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 409 vs. \(2 (134) = 268\).

Time = 0.11 (sec) , antiderivative size = 409, normalized size of antiderivative = 2.32 \[ \int \cot ^{\frac {7}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\frac {16 \, \sqrt {2} {\left (26 \, a^{2} e^{\left (5 i \, d x + 5 i \, c\right )} - 35 \, a^{2} e^{\left (3 i \, d x + 3 i \, c\right )} + 15 \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} - 15 \, \sqrt {\frac {128 i \, a^{5}}{d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {{\left (16 i \, a^{3} e^{\left (i \, d x + i \, c\right )} + \sqrt {2} \sqrt {\frac {128 i \, a^{5}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right ) + 15 \, \sqrt {\frac {128 i \, a^{5}}{d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {{\left (16 i \, a^{3} e^{\left (i \, d x + i \, c\right )} - \sqrt {2} \sqrt {\frac {128 i \, a^{5}}{d^{2}}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right )}{60 \, {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \] Input:

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

1/60*(16*sqrt(2)*(26*a^2*e^(5*I*d*x + 5*I*c) - 35*a^2*e^(3*I*d*x + 3*I*c) 
+ 15*a^2*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I 
*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)) - 15*sqrt(128*I*a^5/d^2)*(d* 
e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log(1/4*(16*I*a^3*e^(I* 
d*x + I*c) + sqrt(2)*sqrt(128*I*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt( 
a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x 
+ 2*I*c) - 1)))*e^(-I*d*x - I*c)/a^2) + 15*sqrt(128*I*a^5/d^2)*(d*e^(4*I*d 
*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log(1/4*(16*I*a^3*e^(I*d*x + I* 
c) - sqrt(2)*sqrt(128*I*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(a/(e^(2* 
I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) 
 - 1)))*e^(-I*d*x - I*c)/a^2))/(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2 
*I*c) + d)
 

Sympy [F(-1)]

Timed out. \[ \int \cot ^{\frac {7}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\text {Timed out} \] Input:

integrate(cot(d*x+c)**(7/2)*(a+I*a*tan(d*x+c))**(5/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1267 vs. \(2 (134) = 268\).

Time = 0.44 (sec) , antiderivative size = 1267, normalized size of antiderivative = 7.20 \[ \int \cot ^{\frac {7}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\text {Too large to display} \] Input:

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

-2/15*(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 
 1)*((-(30*I + 30)*a^2*cos(3*d*x + 3*c) + (31*I + 31)*a^2*cos(d*x + c) - ( 
30*I - 30)*a^2*sin(3*d*x + 3*c) + (31*I - 31)*a^2*sin(d*x + c))*cos(3/2*ar 
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + ((30*I - 30)*a^2*cos(3*d* 
x + 3*c) - (31*I - 31)*a^2*cos(d*x + c) - (30*I + 30)*a^2*sin(3*d*x + 3*c) 
 + (31*I + 31)*a^2*sin(d*x + c))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d 
*x + 2*c) - 1)))*sqrt(a) + 15*(2*((I - 1)*a^2*cos(2*d*x + 2*c)^2 + (I - 1) 
*a^2*sin(2*d*x + 2*c)^2 - (2*I - 2)*a^2*cos(2*d*x + 2*c) + (I - 1)*a^2)*ar 
ctan2(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1) 
^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + 2*sin(d* 
x + c), 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 
1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + 2*cos( 
d*x + c)) + ((I + 1)*a^2*cos(2*d*x + 2*c)^2 + (I + 1)*a^2*sin(2*d*x + 2*c) 
^2 - (2*I + 2)*a^2*cos(2*d*x + 2*c) + (I + 1)*a^2)*log(4*cos(d*x + c)^2 + 
4*sin(d*x + c)^2 + 4*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos( 
2*d*x + 2*c) + 1)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1) 
)^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))^2) + 8*(cos 
(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos( 
d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + sin(d* 
x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)))))*(cos...
 

Giac [F(-2)]

Exception generated. \[ \int \cot ^{\frac {7}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {7}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{7/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2} \,d x \] Input:

int(cot(c + d*x)^(7/2)*(a + a*tan(c + d*x)*1i)^(5/2),x)
                                                                                    
                                                                                    
 

Output:

int(cot(c + d*x)^(7/2)*(a + a*tan(c + d*x)*1i)^(5/2), x)
 

Reduce [F]

\[ \int \cot ^{\frac {7}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} \, dx=\sqrt {a}\, a^{2} \left (-\left (\int \sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right )^{3} \tan \left (d x +c \right )^{2}d x \right )+2 \left (\int \sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right )^{3} \tan \left (d x +c \right )d x \right ) i +\int \sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right )^{3}d x \right ) \] Input:

int(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))^(5/2),x)
 

Output:

sqrt(a)*a**2*( - int(sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x))*cot(c + d 
*x)**3*tan(c + d*x)**2,x) + 2*int(sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d* 
x))*cot(c + d*x)**3*tan(c + d*x),x)*i + int(sqrt(tan(c + d*x)*i + 1)*sqrt( 
cot(c + d*x))*cot(c + d*x)**3,x))