\(\int \frac {1}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx\) [777]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 147 \[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {\left (\frac {1}{4}+\frac {i}{4}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{a^{3/2} d}+\frac {1}{3 d \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}+\frac {i}{2 a d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}} \] Output:

(-1/4-1/4*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/ 
2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/a^(3/2)/d+1/3/d/cot(d*x+c)^(3/2)/(a+ 
I*a*tan(d*x+c))^(3/2)+1/2*I/a/d/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 1.04 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.05 \[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx=\frac {-2 a+6 i a \cot (c+d x)-\frac {3 i \sqrt {2} a \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) (i+\cot (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {i a \tan (c+d x)}}}{12 a^2 d \sqrt {\cot (c+d x)} (i+\cot (c+d x)) \sqrt {a+i a \tan (c+d x)}} \] Input:

Integrate[1/(Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)),x]
 

Output:

(-2*a + (6*I)*a*Cot[c + d*x] - ((3*I)*Sqrt[2]*a*ArcTanh[(Sqrt[2]*Sqrt[I*a* 
Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*(I + Cot[c + d*x])*Sqrt[a + I*a 
*Tan[c + d*x]])/Sqrt[I*a*Tan[c + d*x]])/(12*a^2*d*Sqrt[Cot[c + d*x]]*(I + 
Cot[c + d*x])*Sqrt[a + I*a*Tan[c + d*x]])
 

Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.03, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {3042, 4729, 3042, 4030, 3042, 4029, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\sqrt {\tan (c+d x)}}{(i \tan (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\sqrt {\tan (c+d x)}}{(i \tan (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 4030

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}dx}{2 a}+\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}dx}{2 a}+\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 4029

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {i \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}}{2 a}+\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {i \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}}{2 a}+\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {a \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}}{2 a}+\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}}{2 a}+\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\right )\)

Input:

Int[1/(Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)),x]
 

Output:

Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(Tan[c + d*x]^(3/2)/(3*d*(a + I*a*Ta 
n[c + d*x])^(3/2)) + (((-1/2 - I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + 
d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]*d) + (I*Sqrt[Tan[c + d*x]])/( 
d*Sqrt[a + I*a*Tan[c + d*x]]))/(2*a))
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4029
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^n/(2*b*f*m)), x] - Simp[(a*c - b*d)/(2*b^2)   Int[(a + b*Tan[e + f 
*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, 
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Eq 
Q[m + n, 0] && LeQ[m, -2^(-1)]
 

rule 4030
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^(n + 1)/(2*f*m*(b*c - a*d))), x] + Simp[1/(2*a)   Int[(a + b*Tan[e 
 + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f} 
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[ 
m + n + 1, 0] && LtQ[m, -1]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 373 vs. \(2 (115 ) = 230\).

Time = 0.42 (sec) , antiderivative size = 374, normalized size of antiderivative = 2.54

method result size
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-12 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+3 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +4 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+6 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-3 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}\right )}{24 d \sqrt {\frac {1}{\tan \left (d x +c \right )}}\, a^{3} \left (1+i \tan \left (d x +c \right )\right ) \tan \left (d x +c \right ) \left (-\tan \left (d x +c \right )+i\right )^{2} \sqrt {-i a}}\) \(374\)
default \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-12 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+3 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +4 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+6 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-3 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}\right )}{24 d \sqrt {\frac {1}{\tan \left (d x +c \right )}}\, a^{3} \left (1+i \tan \left (d x +c \right )\right ) \tan \left (d x +c \right ) \left (-\tan \left (d x +c \right )+i\right )^{2} \sqrt {-i a}}\) \(374\)

Input:

int(1/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/24/d*(a*(1+I*tan(d*x+c)))^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(- 
12*I*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*2^(1/2)*ln(-(-2* 
2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x 
+c))/(tan(d*x+c)+I))*a+4*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)* 
(-I*a)^(1/2)+6*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*t 
an(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)-3*2^(1/ 
2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a- 
3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^2)/(1/tan(d*x+c))^(1/2)/a^3/( 
1+I*tan(d*x+c))/tan(d*x+c)/(-tan(d*x+c)+I)^2/(-I*a)^(1/2)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 355 vs. \(2 (107) = 214\).

Time = 0.09 (sec) , antiderivative size = 355, normalized size of antiderivative = 2.41 \[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {{\left (3 \, a^{2} d \sqrt {\frac {i}{2 \, a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (4 \, {\left (\sqrt {2} {\left (a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} - a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {i}{2 \, a^{3} d^{2}}} + i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 3 \, a^{2} d \sqrt {\frac {i}{2 \, a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} {\left (a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} - a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {i}{2 \, a^{3} d^{2}}} - i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} {\left (2 \, e^{\left (4 i \, d x + 4 i \, c\right )} - e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{12 \, a^{2} d} \] Input:

integrate(1/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas 
")
 

Output:

-1/12*(3*a^2*d*sqrt(1/2*I/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(4*(sqrt(2)*(a 
^2*d*e^(2*I*d*x + 2*I*c) - a^2*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(( 
I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(1/2*I/(a^3*d^2) 
) + I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 3*a^2*d*sqrt(1/2*I/(a^3*d^2)) 
*e^(3*I*d*x + 3*I*c)*log(-4*(sqrt(2)*(a^2*d*e^(2*I*d*x + 2*I*c) - a^2*d)*s 
qrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I* 
d*x + 2*I*c) - 1))*sqrt(1/2*I/(a^3*d^2)) - I*a*e^(I*d*x + I*c))*e^(-I*d*x 
- I*c)) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2 
*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*(2*e^(4*I*d*x + 4*I*c) - e^(2*I*d*x 
+ 2*I*c) - 1))*e^(-3*I*d*x - 3*I*c)/(a^2*d)
 

Sympy [F]

\[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx=\int \frac {1}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}} \sqrt {\cot {\left (c + d x \right )}}}\, dx \] Input:

integrate(1/cot(d*x+c)**(1/2)/(a+I*a*tan(d*x+c))**(3/2),x)
 

Output:

Integral(1/((I*a*(tan(c + d*x) - I))**(3/2)*sqrt(cot(c + d*x))), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(1/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima 
")
 

Output:

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(1/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx=\int \frac {1}{\sqrt {\mathrm {cot}\left (c+d\,x\right )}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \] Input:

int(1/(cot(c + d*x)^(1/2)*(a + a*tan(c + d*x)*1i)^(3/2)),x)
 

Output:

int(1/(cot(c + d*x)^(1/2)*(a + a*tan(c + d*x)*1i)^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (-\left (\int \frac {\sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \tan \left (d x +c \right )}{\cot \left (d x +c \right ) \tan \left (d x +c \right )^{3} i +\cot \left (d x +c \right ) \tan \left (d x +c \right )^{2}+\cot \left (d x +c \right ) \tan \left (d x +c \right ) i +\cot \left (d x +c \right )}d x \right ) i +\int \frac {\sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}}{\cot \left (d x +c \right ) \tan \left (d x +c \right )^{3} i +\cot \left (d x +c \right ) \tan \left (d x +c \right )^{2}+\cot \left (d x +c \right ) \tan \left (d x +c \right ) i +\cot \left (d x +c \right )}d x \right )}{a^{2}} \] Input:

int(1/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*( - int((sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x))*tan(c + d*x) 
)/(cot(c + d*x)*tan(c + d*x)**3*i + cot(c + d*x)*tan(c + d*x)**2 + cot(c + 
 d*x)*tan(c + d*x)*i + cot(c + d*x)),x)*i + int((sqrt(tan(c + d*x)*i + 1)* 
sqrt(cot(c + d*x)))/(cot(c + d*x)*tan(c + d*x)**3*i + cot(c + d*x)*tan(c + 
 d*x)**2 + cot(c + d*x)*tan(c + d*x)*i + cot(c + d*x)),x)))/a**2