\(\int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [781]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 258 \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {\left (\frac {1}{8}-\frac {i}{8}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{a^{5/2} d}+\frac {\cot ^{\frac {3}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {7 \cot ^{\frac {3}{2}}(c+d x)}{10 a d (a+i a \tan (c+d x))^{3/2}}+\frac {89 \cot ^{\frac {3}{2}}(c+d x)}{20 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {707 i \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{60 a^3 d}-\frac {361 \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{60 a^3 d} \] Output:

(-1/8+1/8*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/ 
2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/a^(5/2)/d+1/5*cot(d*x+c)^(3/2)/d/(a+ 
I*a*tan(d*x+c))^(5/2)+7/10*cot(d*x+c)^(3/2)/a/d/(a+I*a*tan(d*x+c))^(3/2)+8 
9/20*cot(d*x+c)^(3/2)/a^2/d/(a+I*a*tan(d*x+c))^(1/2)+707/60*I*cot(d*x+c)^( 
1/2)*(a+I*a*tan(d*x+c))^(1/2)/a^3/d-361/60*cot(d*x+c)^(3/2)*(a+I*a*tan(d*x 
+c))^(1/2)/a^3/d
 

Mathematica [A] (verified)

Time = 1.50 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.60 \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {-\frac {15 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {i a \tan (c+d x)}}+\frac {1414-3520 i \cot (c+d x)-2610 \cot ^2(c+d x)+400 i \cot ^3(c+d x)-80 \cot ^4(c+d x)}{(i+\cot (c+d x))^2 \sqrt {a+i a \tan (c+d x)}}}{120 a^2 d \sqrt {\cot (c+d x)}} \] Input:

Integrate[Cot[c + d*x]^(5/2)/(a + I*a*Tan[c + d*x])^(5/2),x]
 

Output:

((-15*Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c 
+ d*x]]])/Sqrt[I*a*Tan[c + d*x]] + (1414 - (3520*I)*Cot[c + d*x] - 2610*Co 
t[c + d*x]^2 + (400*I)*Cot[c + d*x]^3 - 80*Cot[c + d*x]^4)/((I + Cot[c + d 
*x])^2*Sqrt[a + I*a*Tan[c + d*x]]))/(120*a^2*d*Sqrt[Cot[c + d*x]])
 

Rubi [A] (verified)

Time = 1.60 (sec) , antiderivative size = 279, normalized size of antiderivative = 1.08, number of steps used = 21, number of rules used = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.714, Rules used = {3042, 4729, 3042, 4042, 27, 3042, 4079, 27, 3042, 4079, 27, 3042, 4081, 27, 3042, 4081, 27, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot (c+d x)^{5/2}}{(a+i a \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (i \tan (c+d x) a+a)^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {1}{\tan (c+d x)^{5/2} (i \tan (c+d x) a+a)^{5/2}}dx\)

\(\Big \downarrow \) 4042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {13 a-8 i a \tan (c+d x)}{2 \tan ^{\frac {5}{2}}(c+d x) (i \tan (c+d x) a+a)^{3/2}}dx}{5 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {13 a-8 i a \tan (c+d x)}{\tan ^{\frac {5}{2}}(c+d x) (i \tan (c+d x) a+a)^{3/2}}dx}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {13 a-8 i a \tan (c+d x)}{\tan (c+d x)^{5/2} (i \tan (c+d x) a+a)^{3/2}}dx}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 4079

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\int \frac {3 \left (47 a^2-42 i a^2 \tan (c+d x)\right )}{2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {i \tan (c+d x) a+a}}dx}{3 a^2}+\frac {7 a}{d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\int \frac {47 a^2-42 i a^2 \tan (c+d x)}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {i \tan (c+d x) a+a}}dx}{2 a^2}+\frac {7 a}{d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\int \frac {47 a^2-42 i a^2 \tan (c+d x)}{\tan (c+d x)^{5/2} \sqrt {i \tan (c+d x) a+a}}dx}{2 a^2}+\frac {7 a}{d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 4079

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (361 a^3-356 i a^3 \tan (c+d x)\right )}{2 \tan ^{\frac {5}{2}}(c+d x)}dx}{a^2}+\frac {89 a^2}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {7 a}{d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (361 a^3-356 i a^3 \tan (c+d x)\right )}{\tan ^{\frac {5}{2}}(c+d x)}dx}{2 a^2}+\frac {89 a^2}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {7 a}{d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (361 a^3-356 i a^3 \tan (c+d x)\right )}{\tan (c+d x)^{5/2}}dx}{2 a^2}+\frac {89 a^2}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {7 a}{d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 4081

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\frac {\frac {2 \int -\frac {\sqrt {i \tan (c+d x) a+a} \left (722 \tan (c+d x) a^4+707 i a^4\right )}{2 \tan ^{\frac {3}{2}}(c+d x)}dx}{3 a}-\frac {722 a^3 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {89 a^2}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {7 a}{d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\frac {-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (722 \tan (c+d x) a^4+707 i a^4\right )}{\tan ^{\frac {3}{2}}(c+d x)}dx}{3 a}-\frac {722 a^3 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {89 a^2}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {7 a}{d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\frac {-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (722 \tan (c+d x) a^4+707 i a^4\right )}{\tan (c+d x)^{3/2}}dx}{3 a}-\frac {722 a^3 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {89 a^2}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {7 a}{d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 4081

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\frac {-\frac {\frac {2 \int \frac {15 a^5 \sqrt {i \tan (c+d x) a+a}}{2 \sqrt {\tan (c+d x)}}dx}{a}-\frac {1414 i a^4 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {722 a^3 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {89 a^2}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {7 a}{d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\frac {-\frac {15 a^4 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {1414 i a^4 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {722 a^3 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {89 a^2}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {7 a}{d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\frac {-\frac {15 a^4 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {1414 i a^4 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {722 a^3 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {89 a^2}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {7 a}{d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\frac {-\frac {-\frac {30 i a^6 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {1414 i a^4 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {722 a^3 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{2 a^2}+\frac {89 a^2}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}}{2 a^2}+\frac {7 a}{d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\frac {89 a^2}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}+\frac {-\frac {722 a^3 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {\frac {(15-15 i) a^{9/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {1414 i a^4 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}}{2 a^2}}{2 a^2}+\frac {7 a}{d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}}{10 a^2}+\frac {1}{5 d \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}\right )\)

Input:

Int[Cot[c + d*x]^(5/2)/(a + I*a*Tan[c + d*x])^(5/2),x]
 

Output:

Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(1/(5*d*Tan[c + d*x]^(3/2)*(a + I*a* 
Tan[c + d*x])^(5/2)) + ((7*a)/(d*Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x]) 
^(3/2)) + ((89*a^2)/(d*Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]]) + (( 
-722*a^3*Sqrt[a + I*a*Tan[c + d*x]])/(3*d*Tan[c + d*x]^(3/2)) - (((15 - 15 
*I)*a^(9/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[ 
c + d*x]]])/d - ((1414*I)*a^4*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + 
d*x]]))/(3*a))/(2*a^2))/(2*a^2))/(10*a^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4042
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^(n + 1)/(2*f*m*(b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d))   In 
t[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*c*m - a*d*(2*m 
 + n + 1) + b*d*(m + n + 1)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] 
 && LtQ[m, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4079
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*f*m*( 
b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m 
 + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m 
- b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Free 
Q[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] 
 && LtQ[m, 0] &&  !GtQ[n, 0]
 

rule 4081
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*(n + 
1)*(c^2 + d^2))), x] - Simp[1/(a*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + 
f*x])^m*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c* 
m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Fr 
eeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 
0] && LtQ[n, -1]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 663 vs. \(2 (205 ) = 410\).

Time = 0.43 (sec) , antiderivative size = 664, normalized size of antiderivative = 2.57

method result size
derivativedivides \(\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {5}{2}} \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (15 i \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{6}-90 i \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{4}+60 \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{5}+9868 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{4}+2828 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{5}+15 i \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{2}-60 \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{3}-6020 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{2}-12260 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{3}+640 i \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-160 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{240 d \,a^{3} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right )^{4} \sqrt {-i a}}\) \(664\)
default \(\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {5}{2}} \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (15 i \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{6}-90 i \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{4}+60 \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{5}+9868 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{4}+2828 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{5}+15 i \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{2}-60 \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{3}-6020 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{2}-12260 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{3}+640 i \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-160 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{240 d \,a^{3} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right )^{4} \sqrt {-i a}}\) \(664\)

Input:

int(cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/240/d*(1/tan(d*x+c))^(5/2)*tan(d*x+c)*(a*(1+I*tan(d*x+c)))^(1/2)/a^3*(15 
*I*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*ta 
n(d*x+c)-I*a)/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^6-90*I*ln((2*2^(1/2)*(- 
I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan( 
d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^4+60*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x 
+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*2^(1/2)*a* 
tan(d*x+c)^5+9868*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d 
*x+c)^4+2828*I*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+ 
c)^5+15*I*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2) 
+3*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^2-60*ln((2*2^(1/ 
2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/ 
(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^3-6020*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+ 
I*tan(d*x+c)))^(1/2)*tan(d*x+c)^2-12260*I*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I* 
tan(d*x+c)))^(1/2)*tan(d*x+c)^3+640*I*(-I*a)^(1/2)*tan(d*x+c)*(a*tan(d*x+c 
)*(1+I*tan(d*x+c)))^(1/2)-160*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c))) 
^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-tan(d*x+c)+I)^4/(-I*a)^(1/ 
2)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 431 vs. \(2 (194) = 388\).

Time = 0.11 (sec) , antiderivative size = 431, normalized size of antiderivative = 1.67 \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} {\left (983 i \, e^{\left (8 i \, d x + 8 i \, c\right )} - 1527 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 348 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 33 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 3 i\right )} + 30 \, {\left (a^{3} d e^{\left (7 i \, d x + 7 i \, c\right )} - a^{3} d e^{\left (5 i \, d x + 5 i \, c\right )}\right )} \sqrt {-\frac {i}{8 \, a^{5} d^{2}}} \log \left (-4 \, {\left (2 \, \sqrt {2} {\left (i \, a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {-\frac {i}{8 \, a^{5} d^{2}}} - i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 30 \, {\left (a^{3} d e^{\left (7 i \, d x + 7 i \, c\right )} - a^{3} d e^{\left (5 i \, d x + 5 i \, c\right )}\right )} \sqrt {-\frac {i}{8 \, a^{5} d^{2}}} \log \left (-4 \, {\left (2 \, \sqrt {2} {\left (-i \, a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {-\frac {i}{8 \, a^{5} d^{2}}} - i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right )}{120 \, {\left (a^{3} d e^{\left (7 i \, d x + 7 i \, c\right )} - a^{3} d e^{\left (5 i \, d x + 5 i \, c\right )}\right )}} \] Input:

integrate(cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

1/120*(sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I* 
c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*(983*I*e^(8*I*d*x + 8*I*c) - 1527*I*e^( 
6*I*d*x + 6*I*c) + 348*I*e^(4*I*d*x + 4*I*c) + 33*I*e^(2*I*d*x + 2*I*c) + 
3*I) + 30*(a^3*d*e^(7*I*d*x + 7*I*c) - a^3*d*e^(5*I*d*x + 5*I*c))*sqrt(-1/ 
8*I/(a^5*d^2))*log(-4*(2*sqrt(2)*(I*a^3*d*e^(2*I*d*x + 2*I*c) - I*a^3*d)*s 
qrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I* 
d*x + 2*I*c) - 1))*sqrt(-1/8*I/(a^5*d^2)) - I*a*e^(I*d*x + I*c))*e^(-I*d*x 
 - I*c)) - 30*(a^3*d*e^(7*I*d*x + 7*I*c) - a^3*d*e^(5*I*d*x + 5*I*c))*sqrt 
(-1/8*I/(a^5*d^2))*log(-4*(2*sqrt(2)*(-I*a^3*d*e^(2*I*d*x + 2*I*c) + I*a^3 
*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^ 
(2*I*d*x + 2*I*c) - 1))*sqrt(-1/8*I/(a^5*d^2)) - I*a*e^(I*d*x + I*c))*e^(- 
I*d*x - I*c)))/(a^3*d*e^(7*I*d*x + 7*I*c) - a^3*d*e^(5*I*d*x + 5*I*c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(cot(d*x+c)**(5/2)/(a+I*a*tan(d*x+c))**(5/2),x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {{\mathrm {cot}\left (c+d\,x\right )}^{5/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \] Input:

int(cot(c + d*x)^(5/2)/(a + a*tan(c + d*x)*1i)^(5/2),x)
 

Output:

int(cot(c + d*x)^(5/2)/(a + a*tan(c + d*x)*1i)^(5/2), x)
 

Reduce [F]

\[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {\int \frac {\sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right )^{2}}{\sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )^{2}-2 \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right ) i -\sqrt {\tan \left (d x +c \right ) i +1}}d x}{\sqrt {a}\, a^{2}} \] Input:

int(cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x)
 

Output:

( - int((sqrt(cot(c + d*x))*cot(c + d*x)**2)/(sqrt(tan(c + d*x)*i + 1)*tan 
(c + d*x)**2 - 2*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x)*i - sqrt(tan(c + d* 
x)*i + 1)),x))/(sqrt(a)*a**2)