\(\int \cot ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x)) \, dx\) [798]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 161 \[ \int \cot ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x)) \, dx=\frac {(a-b) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {(a-b) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {(a+b) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\cot (c+d x)}}{1+\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {2 a \sqrt {\cot (c+d x)}}{d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d} \] Output:

-1/2*(a-b)*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))*2^(1/2)/d-1/2*(a-b)*arctan( 
1+2^(1/2)*cot(d*x+c)^(1/2))*2^(1/2)/d-1/2*(a+b)*arctanh(2^(1/2)*cot(d*x+c) 
^(1/2)/(1+cot(d*x+c)))*2^(1/2)/d+2*a*cot(d*x+c)^(1/2)/d-2/3*b*cot(d*x+c)^( 
3/2)/d-2/5*a*cot(d*x+c)^(5/2)/d
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.14 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.41 \[ \int \cot ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x)) \, dx=-\frac {2 \cot ^{\frac {3}{2}}(c+d x) \left (3 a \cot (c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {5}{4},1,-\frac {1}{4},-\tan ^2(c+d x)\right )+5 b \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},1,\frac {1}{4},-\tan ^2(c+d x)\right )\right )}{15 d} \] Input:

Integrate[Cot[c + d*x]^(7/2)*(a + b*Tan[c + d*x]),x]
 

Output:

(-2*Cot[c + d*x]^(3/2)*(3*a*Cot[c + d*x]*Hypergeometric2F1[-5/4, 1, -1/4, 
-Tan[c + d*x]^2] + 5*b*Hypergeometric2F1[-3/4, 1, 1/4, -Tan[c + d*x]^2]))/ 
(15*d)
 

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.23, number of steps used = 20, number of rules used = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.905, Rules used = {3042, 4156, 3042, 4011, 3042, 4011, 3042, 4011, 3042, 4017, 25, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot (c+d x)^{7/2} (a+b \tan (c+d x))dx\)

\(\Big \downarrow \) 4156

\(\displaystyle \int \cot ^{\frac {5}{2}}(c+d x) (a \cot (c+d x)+b)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (-\tan \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 4011

\(\displaystyle \int \cot ^{\frac {3}{2}}(c+d x) (b \cot (c+d x)-a)dx-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (-\tan \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (-a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )dx-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}\)

\(\Big \downarrow \) 4011

\(\displaystyle \int \sqrt {\cot (c+d x)} (-b-a \cot (c+d x))dx-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (a \tan \left (c+d x+\frac {\pi }{2}\right )-b\right )dx-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 4011

\(\displaystyle \int \frac {a-b \cot (c+d x)}{\sqrt {\cot (c+d x)}}dx-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a \sqrt {\cot (c+d x)}}{d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a+b \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a \sqrt {\cot (c+d x)}}{d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {2 \int -\frac {a-b \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d}-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a \sqrt {\cot (c+d x)}}{d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 \int \frac {a-b \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d}-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a \sqrt {\cot (c+d x)}}{d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a-b) \int \frac {\cot (c+d x)+1}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a \sqrt {\cot (c+d x)}}{d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a-b) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )\right )}{d}-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a \sqrt {\cot (c+d x)}}{d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a-b) \left (\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a \sqrt {\cot (c+d x)}}{d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a \sqrt {\cot (c+d x)}}{d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a \sqrt {\cot (c+d x)}}{d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a \sqrt {\cot (c+d x)}}{d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\cot (c+d x)}+1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a \sqrt {\cot (c+d x)}}{d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a+b) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d}-\frac {2 a \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a \sqrt {\cot (c+d x)}}{d}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x)}{3 d}\)

Input:

Int[Cot[c + d*x]^(7/2)*(a + b*Tan[c + d*x]),x]
 

Output:

(2*a*Sqrt[Cot[c + d*x]])/d - (2*b*Cot[c + d*x]^(3/2))/(3*d) - (2*a*Cot[c + 
 d*x]^(5/2))/(5*d) + (2*(-1/2*((a - b)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + 
d*x]]]/Sqrt[2]) + ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2])) - ((a + 
 b)*(-1/2*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]/Sqrt[2] + Log 
[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]/(2*Sqrt[2])))/2))/d
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4011
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Int 
[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 
 0] && GtQ[m, 0]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4156
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Cot[e + f*x])^(m - n*p 
)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(283\) vs. \(2(133)=266\).

Time = 0.26 (sec) , antiderivative size = 284, normalized size of antiderivative = 1.76

method result size
derivativedivides \(-\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {7}{2}} \tan \left (d x +c \right ) \left (15 b \sqrt {2}\, \tan \left (d x +c \right )^{\frac {5}{2}} \ln \left (-\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}-\tan \left (d x +c \right )-1}\right )-30 a \sqrt {2}\, \tan \left (d x +c \right )^{\frac {5}{2}} \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+30 b \sqrt {2}\, \tan \left (d x +c \right )^{\frac {5}{2}} \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )-30 a \sqrt {2}\, \tan \left (d x +c \right )^{\frac {5}{2}} \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+30 b \sqrt {2}\, \tan \left (d x +c \right )^{\frac {5}{2}} \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )-15 a \sqrt {2}\, \tan \left (d x +c \right )^{\frac {5}{2}} \ln \left (-\frac {\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}-\tan \left (d x +c \right )-1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )-120 a \tan \left (d x +c \right )^{2}+40 b \tan \left (d x +c \right )+24 a \right )}{60 d}\) \(284\)
default \(-\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {7}{2}} \tan \left (d x +c \right ) \left (15 b \sqrt {2}\, \tan \left (d x +c \right )^{\frac {5}{2}} \ln \left (-\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}-\tan \left (d x +c \right )-1}\right )-30 a \sqrt {2}\, \tan \left (d x +c \right )^{\frac {5}{2}} \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+30 b \sqrt {2}\, \tan \left (d x +c \right )^{\frac {5}{2}} \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )-30 a \sqrt {2}\, \tan \left (d x +c \right )^{\frac {5}{2}} \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+30 b \sqrt {2}\, \tan \left (d x +c \right )^{\frac {5}{2}} \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )-15 a \sqrt {2}\, \tan \left (d x +c \right )^{\frac {5}{2}} \ln \left (-\frac {\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}-\tan \left (d x +c \right )-1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )-120 a \tan \left (d x +c \right )^{2}+40 b \tan \left (d x +c \right )+24 a \right )}{60 d}\) \(284\)

Input:

int(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

-1/60/d*(1/tan(d*x+c))^(7/2)*tan(d*x+c)*(15*b*2^(1/2)*tan(d*x+c)^(5/2)*ln( 
-(tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1/2)+1)/(2^(1/2)*tan(d*x+c)^(1/2)-tan(d*x 
+c)-1))-30*a*2^(1/2)*tan(d*x+c)^(5/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+3 
0*b*2^(1/2)*tan(d*x+c)^(5/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))-30*a*2^(1/ 
2)*tan(d*x+c)^(5/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))+30*b*2^(1/2)*tan(d 
*x+c)^(5/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))-15*a*2^(1/2)*tan(d*x+c)^(5 
/2)*ln(-(2^(1/2)*tan(d*x+c)^(1/2)-tan(d*x+c)-1)/(tan(d*x+c)+2^(1/2)*tan(d* 
x+c)^(1/2)+1))-120*a*tan(d*x+c)^2+40*b*tan(d*x+c)+24*a)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 437 vs. \(2 (133) = 266\).

Time = 0.08 (sec) , antiderivative size = 437, normalized size of antiderivative = 2.71 \[ \int \cot ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x)) \, dx=-\frac {30 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{2} - 2 \, a b + b^{2}}{d^{2}}} \arctan \left (-\frac {2 \, \sqrt {\frac {1}{2}} {\left (a + b\right )} d \sqrt {\frac {a^{2} - 2 \, a b + b^{2}}{d^{2}}} \sqrt {\tan \left (d x + c\right )} + d^{2} \sqrt {\frac {a^{2} + 2 \, a b + b^{2}}{d^{2}}} \sqrt {\frac {a^{2} - 2 \, a b + b^{2}}{d^{2}}}}{a^{2} - b^{2}}\right ) \tan \left (d x + c\right )^{2} + 30 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{2} - 2 \, a b + b^{2}}{d^{2}}} \arctan \left (-\frac {2 \, \sqrt {\frac {1}{2}} {\left (a + b\right )} d \sqrt {\frac {a^{2} - 2 \, a b + b^{2}}{d^{2}}} \sqrt {\tan \left (d x + c\right )} - d^{2} \sqrt {\frac {a^{2} + 2 \, a b + b^{2}}{d^{2}}} \sqrt {\frac {a^{2} - 2 \, a b + b^{2}}{d^{2}}}}{a^{2} - b^{2}}\right ) \tan \left (d x + c\right )^{2} + 15 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{2} + 2 \, a b + b^{2}}{d^{2}}} \log \left (2 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{2} + 2 \, a b + b^{2}}{d^{2}}} \sqrt {\tan \left (d x + c\right )} + {\left (a + b\right )} \tan \left (d x + c\right ) + a + b\right ) \tan \left (d x + c\right )^{2} - 15 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{2} + 2 \, a b + b^{2}}{d^{2}}} \log \left (-2 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{2} + 2 \, a b + b^{2}}{d^{2}}} \sqrt {\tan \left (d x + c\right )} + {\left (a + b\right )} \tan \left (d x + c\right ) + a + b\right ) \tan \left (d x + c\right )^{2} - \frac {4 \, {\left (15 \, a \tan \left (d x + c\right )^{2} - 5 \, b \tan \left (d x + c\right ) - 3 \, a\right )}}{\sqrt {\tan \left (d x + c\right )}}}{30 \, d \tan \left (d x + c\right )^{2}} \] Input:

integrate(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c)),x, algorithm="fricas")
 

Output:

-1/30*(30*sqrt(1/2)*d*sqrt((a^2 - 2*a*b + b^2)/d^2)*arctan(-(2*sqrt(1/2)*( 
a + b)*d*sqrt((a^2 - 2*a*b + b^2)/d^2)*sqrt(tan(d*x + c)) + d^2*sqrt((a^2 
+ 2*a*b + b^2)/d^2)*sqrt((a^2 - 2*a*b + b^2)/d^2))/(a^2 - b^2))*tan(d*x + 
c)^2 + 30*sqrt(1/2)*d*sqrt((a^2 - 2*a*b + b^2)/d^2)*arctan(-(2*sqrt(1/2)*( 
a + b)*d*sqrt((a^2 - 2*a*b + b^2)/d^2)*sqrt(tan(d*x + c)) - d^2*sqrt((a^2 
+ 2*a*b + b^2)/d^2)*sqrt((a^2 - 2*a*b + b^2)/d^2))/(a^2 - b^2))*tan(d*x + 
c)^2 + 15*sqrt(1/2)*d*sqrt((a^2 + 2*a*b + b^2)/d^2)*log(2*sqrt(1/2)*d*sqrt 
((a^2 + 2*a*b + b^2)/d^2)*sqrt(tan(d*x + c)) + (a + b)*tan(d*x + c) + a + 
b)*tan(d*x + c)^2 - 15*sqrt(1/2)*d*sqrt((a^2 + 2*a*b + b^2)/d^2)*log(-2*sq 
rt(1/2)*d*sqrt((a^2 + 2*a*b + b^2)/d^2)*sqrt(tan(d*x + c)) + (a + b)*tan(d 
*x + c) + a + b)*tan(d*x + c)^2 - 4*(15*a*tan(d*x + c)^2 - 5*b*tan(d*x + c 
) - 3*a)/sqrt(tan(d*x + c)))/(d*tan(d*x + c)^2)
 

Sympy [F(-1)]

Timed out. \[ \int \cot ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(cot(d*x+c)**(7/2)*(a+b*tan(d*x+c)),x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.01 \[ \int \cot ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x)) \, dx=-\frac {30 \, \sqrt {2} {\left (a - b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 30 \, \sqrt {2} {\left (a - b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 15 \, \sqrt {2} {\left (a + b\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - 15 \, \sqrt {2} {\left (a + b\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \frac {120 \, a}{\sqrt {\tan \left (d x + c\right )}} + \frac {40 \, b}{\tan \left (d x + c\right )^{\frac {3}{2}}} + \frac {24 \, a}{\tan \left (d x + c\right )^{\frac {5}{2}}}}{60 \, d} \] Input:

integrate(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c)),x, algorithm="maxima")
 

Output:

-1/60*(30*sqrt(2)*(a - b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c 
)))) + 30*sqrt(2)*(a - b)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + 
c)))) + 15*sqrt(2)*(a + b)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) 
 + 1) - 15*sqrt(2)*(a + b)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c 
) + 1) - 120*a/sqrt(tan(d*x + c)) + 40*b/tan(d*x + c)^(3/2) + 24*a/tan(d*x 
 + c)^(5/2))/d
 

Giac [F]

\[ \int \cot ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x)) \, dx=\int { {\left (b \tan \left (d x + c\right ) + a\right )} \cot \left (d x + c\right )^{\frac {7}{2}} \,d x } \] Input:

integrate(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c)),x, algorithm="giac")
 

Output:

integrate((b*tan(d*x + c) + a)*cot(d*x + c)^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x)) \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{7/2}\,\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right ) \,d x \] Input:

int(cot(c + d*x)^(7/2)*(a + b*tan(c + d*x)),x)
 

Output:

int(cot(c + d*x)^(7/2)*(a + b*tan(c + d*x)), x)
 

Reduce [F]

\[ \int \cot ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x)) \, dx=\frac {-2 \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right )^{2} a +10 \sqrt {\cot \left (d x +c \right )}\, a +5 \left (\int \frac {\sqrt {\cot \left (d x +c \right )}}{\cot \left (d x +c \right )}d x \right ) a d +5 \left (\int \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right )^{3} \tan \left (d x +c \right )d x \right ) b d}{5 d} \] Input:

int(cot(d*x+c)^(7/2)*(a+b*tan(d*x+c)),x)
                                                                                    
                                                                                    
 

Output:

( - 2*sqrt(cot(c + d*x))*cot(c + d*x)**2*a + 10*sqrt(cot(c + d*x))*a + 5*i 
nt(sqrt(cot(c + d*x))/cot(c + d*x),x)*a*d + 5*int(sqrt(cot(c + d*x))*cot(c 
 + d*x)**3*tan(c + d*x),x)*b*d)/(5*d)