\(\int \frac {(a+b \tan (c+d x))^2}{\sqrt {\cot (c+d x)}} \, dx\) [810]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 172 \[ \int \frac {(a+b \tan (c+d x))^2}{\sqrt {\cot (c+d x)}} \, dx=\frac {\left (a^2-2 a b-b^2\right ) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2-2 a b-b^2\right ) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2+2 a b-b^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\cot (c+d x)}}{1+\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}+\frac {4 a b}{d \sqrt {\cot (c+d x)}} \] Output:

-1/2*(a^2-2*a*b-b^2)*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))*2^(1/2)/d-1/2*(a^ 
2-2*a*b-b^2)*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))*2^(1/2)/d-1/2*(a^2+2*a*b-b 
^2)*arctanh(2^(1/2)*cot(d*x+c)^(1/2)/(1+cot(d*x+c)))*2^(1/2)/d+2/3*b^2/d/c 
ot(d*x+c)^(3/2)+4*a*b/d/cot(d*x+c)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.21 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.45 \[ \int \frac {(a+b \tan (c+d x))^2}{\sqrt {\cot (c+d x)}} \, dx=\frac {2 \left (\left (-a^2+b^2\right ) \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},1,\frac {1}{4},-\cot ^2(c+d x)\right )+a \left (a+6 b \cot (c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},1,\frac {3}{4},-\cot ^2(c+d x)\right )\right )\right )}{3 d \cot ^{\frac {3}{2}}(c+d x)} \] Input:

Integrate[(a + b*Tan[c + d*x])^2/Sqrt[Cot[c + d*x]],x]
 

Output:

(2*((-a^2 + b^2)*Hypergeometric2F1[-3/4, 1, 1/4, -Cot[c + d*x]^2] + a*(a + 
 6*b*Cot[c + d*x]*Hypergeometric2F1[-1/4, 1, 3/4, -Cot[c + d*x]^2])))/(3*d 
*Cot[c + d*x]^(3/2))
 

Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.17, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.739, Rules used = {3042, 4156, 3042, 4025, 3042, 4012, 3042, 4017, 25, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \tan (c+d x))^2}{\sqrt {\cot (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \tan (c+d x))^2}{\sqrt {\cot (c+d x)}}dx\)

\(\Big \downarrow \) 4156

\(\displaystyle \int \frac {(a \cot (c+d x)+b)^2}{\cot ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )^2}{\left (-\tan \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 4025

\(\displaystyle \int \frac {2 a b+\left (a^2-b^2\right ) \cot (c+d x)}{\cot ^{\frac {3}{2}}(c+d x)}dx+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {2 a b-\left (a^2-b^2\right ) \tan \left (c+d x+\frac {\pi }{2}\right )}{\left (-\tan \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4012

\(\displaystyle \int \frac {a^2-2 b \cot (c+d x) a-b^2}{\sqrt {\cot (c+d x)}}dx+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a^2+2 b \tan \left (c+d x+\frac {\pi }{2}\right ) a-b^2}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {2 \int -\frac {a^2-2 b \cot (c+d x) a-b^2}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 \int \frac {a^2-2 b \cot (c+d x) a-b^2}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {2 \left (-\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \int \frac {\cot (c+d x)+1}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (-\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )\right )}{d}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (-\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (-\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (-\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (-\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (-\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\cot (c+d x)}+1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d}+\frac {4 a b}{d \sqrt {\cot (c+d x)}}+\frac {2 b^2}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

Input:

Int[(a + b*Tan[c + d*x])^2/Sqrt[Cot[c + d*x]],x]
 

Output:

(2*b^2)/(3*d*Cot[c + d*x]^(3/2)) + (4*a*b)/(d*Sqrt[Cot[c + d*x]]) + (2*(-1 
/2*((a^2 - 2*a*b - b^2)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]) 
 + ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2])) - ((a^2 + 2*a*b - b^2) 
*(-1/2*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]/Sqrt[2] + Log[1 
+ Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]/(2*Sqrt[2])))/2))/d
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4025
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^2, x_Symbol] :> Simp[(b*c - a*d)^2*((a + b*Tan[e + f*x])^(m + 
 1)/(b*f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e 
+ f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Ta 
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] 
 && LtQ[m, -1] && NeQ[a^2 + b^2, 0]
 

rule 4156
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Cot[e + f*x])^(m - n*p 
)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 
Maple [A] (verified)

Time = 0.22 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.24

method result size
derivativedivides \(-\frac {\frac {\left (a^{2}-b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}{\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}-\frac {a b \sqrt {2}\, \left (\ln \left (\frac {\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}{\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{2}-\frac {2 b^{2}}{3 \cot \left (d x +c \right )^{\frac {3}{2}}}-\frac {4 a b}{\sqrt {\cot \left (d x +c \right )}}}{d}\) \(213\)
default \(-\frac {\frac {\left (a^{2}-b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}{\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}-\frac {a b \sqrt {2}\, \left (\ln \left (\frac {\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}{\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{2}-\frac {2 b^{2}}{3 \cot \left (d x +c \right )^{\frac {3}{2}}}-\frac {4 a b}{\sqrt {\cot \left (d x +c \right )}}}{d}\) \(213\)

Input:

int((a+b*tan(d*x+c))^2/cot(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/d*(1/4*(a^2-b^2)*2^(1/2)*(ln((cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2)+1)/(c 
ot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2)+1))+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2) 
)+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2)))-1/2*a*b*2^(1/2)*(ln((cot(d*x+c)-2 
^(1/2)*cot(d*x+c)^(1/2)+1)/(cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2)+1))+2*arct 
an(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2)))-2/3* 
b^2/cot(d*x+c)^(3/2)-4*a*b/cot(d*x+c)^(1/2))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 662 vs. \(2 (148) = 296\).

Time = 0.09 (sec) , antiderivative size = 662, normalized size of antiderivative = 3.85 \[ \int \frac {(a+b \tan (c+d x))^2}{\sqrt {\cot (c+d x)}} \, dx=-\frac {6 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{4} - 4 \, a^{3} b + 2 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}}{d^{2}}} \arctan \left (-\frac {2 \, \sqrt {\frac {1}{2}} {\left (a^{2} + 2 \, a b - b^{2}\right )} d \sqrt {\frac {a^{4} - 4 \, a^{3} b + 2 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}}{d^{2}}} \sqrt {\tan \left (d x + c\right )} + d^{2} \sqrt {\frac {a^{4} + 4 \, a^{3} b + 2 \, a^{2} b^{2} - 4 \, a b^{3} + b^{4}}{d^{2}}} \sqrt {\frac {a^{4} - 4 \, a^{3} b + 2 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}}{d^{2}}}}{a^{4} - 6 \, a^{2} b^{2} + b^{4}}\right ) + 6 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{4} - 4 \, a^{3} b + 2 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}}{d^{2}}} \arctan \left (-\frac {2 \, \sqrt {\frac {1}{2}} {\left (a^{2} + 2 \, a b - b^{2}\right )} d \sqrt {\frac {a^{4} - 4 \, a^{3} b + 2 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}}{d^{2}}} \sqrt {\tan \left (d x + c\right )} - d^{2} \sqrt {\frac {a^{4} + 4 \, a^{3} b + 2 \, a^{2} b^{2} - 4 \, a b^{3} + b^{4}}{d^{2}}} \sqrt {\frac {a^{4} - 4 \, a^{3} b + 2 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}}{d^{2}}}}{a^{4} - 6 \, a^{2} b^{2} + b^{4}}\right ) - 3 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{4} + 4 \, a^{3} b + 2 \, a^{2} b^{2} - 4 \, a b^{3} + b^{4}}{d^{2}}} \log \left (2 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{4} + 4 \, a^{3} b + 2 \, a^{2} b^{2} - 4 \, a b^{3} + b^{4}}{d^{2}}} \sqrt {\tan \left (d x + c\right )} - a^{2} - 2 \, a b + b^{2} - {\left (a^{2} + 2 \, a b - b^{2}\right )} \tan \left (d x + c\right )\right ) + 3 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{4} + 4 \, a^{3} b + 2 \, a^{2} b^{2} - 4 \, a b^{3} + b^{4}}{d^{2}}} \log \left (-2 \, \sqrt {\frac {1}{2}} d \sqrt {\frac {a^{4} + 4 \, a^{3} b + 2 \, a^{2} b^{2} - 4 \, a b^{3} + b^{4}}{d^{2}}} \sqrt {\tan \left (d x + c\right )} - a^{2} - 2 \, a b + b^{2} - {\left (a^{2} + 2 \, a b - b^{2}\right )} \tan \left (d x + c\right )\right ) - \frac {4 \, {\left (b^{2} \tan \left (d x + c\right )^{2} + 6 \, a b \tan \left (d x + c\right )\right )}}{\sqrt {\tan \left (d x + c\right )}}}{6 \, d} \] Input:

integrate((a+b*tan(d*x+c))^2/cot(d*x+c)^(1/2),x, algorithm="fricas")
 

Output:

-1/6*(6*sqrt(1/2)*d*sqrt((a^4 - 4*a^3*b + 2*a^2*b^2 + 4*a*b^3 + b^4)/d^2)* 
arctan(-(2*sqrt(1/2)*(a^2 + 2*a*b - b^2)*d*sqrt((a^4 - 4*a^3*b + 2*a^2*b^2 
 + 4*a*b^3 + b^4)/d^2)*sqrt(tan(d*x + c)) + d^2*sqrt((a^4 + 4*a^3*b + 2*a^ 
2*b^2 - 4*a*b^3 + b^4)/d^2)*sqrt((a^4 - 4*a^3*b + 2*a^2*b^2 + 4*a*b^3 + b^ 
4)/d^2))/(a^4 - 6*a^2*b^2 + b^4)) + 6*sqrt(1/2)*d*sqrt((a^4 - 4*a^3*b + 2* 
a^2*b^2 + 4*a*b^3 + b^4)/d^2)*arctan(-(2*sqrt(1/2)*(a^2 + 2*a*b - b^2)*d*s 
qrt((a^4 - 4*a^3*b + 2*a^2*b^2 + 4*a*b^3 + b^4)/d^2)*sqrt(tan(d*x + c)) - 
d^2*sqrt((a^4 + 4*a^3*b + 2*a^2*b^2 - 4*a*b^3 + b^4)/d^2)*sqrt((a^4 - 4*a^ 
3*b + 2*a^2*b^2 + 4*a*b^3 + b^4)/d^2))/(a^4 - 6*a^2*b^2 + b^4)) - 3*sqrt(1 
/2)*d*sqrt((a^4 + 4*a^3*b + 2*a^2*b^2 - 4*a*b^3 + b^4)/d^2)*log(2*sqrt(1/2 
)*d*sqrt((a^4 + 4*a^3*b + 2*a^2*b^2 - 4*a*b^3 + b^4)/d^2)*sqrt(tan(d*x + c 
)) - a^2 - 2*a*b + b^2 - (a^2 + 2*a*b - b^2)*tan(d*x + c)) + 3*sqrt(1/2)*d 
*sqrt((a^4 + 4*a^3*b + 2*a^2*b^2 - 4*a*b^3 + b^4)/d^2)*log(-2*sqrt(1/2)*d* 
sqrt((a^4 + 4*a^3*b + 2*a^2*b^2 - 4*a*b^3 + b^4)/d^2)*sqrt(tan(d*x + c)) - 
 a^2 - 2*a*b + b^2 - (a^2 + 2*a*b - b^2)*tan(d*x + c)) - 4*(b^2*tan(d*x + 
c)^2 + 6*a*b*tan(d*x + c))/sqrt(tan(d*x + c)))/d
 

Sympy [F]

\[ \int \frac {(a+b \tan (c+d x))^2}{\sqrt {\cot (c+d x)}} \, dx=\int \frac {\left (a + b \tan {\left (c + d x \right )}\right )^{2}}{\sqrt {\cot {\left (c + d x \right )}}}\, dx \] Input:

integrate((a+b*tan(d*x+c))**2/cot(d*x+c)**(1/2),x)
 

Output:

Integral((a + b*tan(c + d*x))**2/sqrt(cot(c + d*x)), x)
 

Maxima [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.11 \[ \int \frac {(a+b \tan (c+d x))^2}{\sqrt {\cot (c+d x)}} \, dx=-\frac {6 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 6 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 3 \, \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - 3 \, \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - 8 \, {\left (b^{2} + \frac {6 \, a b}{\tan \left (d x + c\right )}\right )} \tan \left (d x + c\right )^{\frac {3}{2}}}{12 \, d} \] Input:

integrate((a+b*tan(d*x+c))^2/cot(d*x+c)^(1/2),x, algorithm="maxima")
 

Output:

-1/12*(6*sqrt(2)*(a^2 - 2*a*b - b^2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt( 
tan(d*x + c)))) + 6*sqrt(2)*(a^2 - 2*a*b - b^2)*arctan(-1/2*sqrt(2)*(sqrt( 
2) - 2/sqrt(tan(d*x + c)))) + 3*sqrt(2)*(a^2 + 2*a*b - b^2)*log(sqrt(2)/sq 
rt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - 3*sqrt(2)*(a^2 + 2*a*b - b^2)*log 
(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - 8*(b^2 + 6*a*b/tan(d* 
x + c))*tan(d*x + c)^(3/2))/d
 

Giac [F]

\[ \int \frac {(a+b \tan (c+d x))^2}{\sqrt {\cot (c+d x)}} \, dx=\int { \frac {{\left (b \tan \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\cot \left (d x + c\right )}} \,d x } \] Input:

integrate((a+b*tan(d*x+c))^2/cot(d*x+c)^(1/2),x, algorithm="giac")
 

Output:

integrate((b*tan(d*x + c) + a)^2/sqrt(cot(d*x + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \tan (c+d x))^2}{\sqrt {\cot (c+d x)}} \, dx=\int \frac {{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^2}{\sqrt {\mathrm {cot}\left (c+d\,x\right )}} \,d x \] Input:

int((a + b*tan(c + d*x))^2/cot(c + d*x)^(1/2),x)
 

Output:

int((a + b*tan(c + d*x))^2/cot(c + d*x)^(1/2), x)
 

Reduce [F]

\[ \int \frac {(a+b \tan (c+d x))^2}{\sqrt {\cot (c+d x)}} \, dx=\left (\int \frac {\sqrt {\cot \left (d x +c \right )}}{\cot \left (d x +c \right )}d x \right ) a^{2}+\left (\int \frac {\sqrt {\cot \left (d x +c \right )}\, \tan \left (d x +c \right )^{2}}{\cot \left (d x +c \right )}d x \right ) b^{2}+2 \left (\int \frac {\sqrt {\cot \left (d x +c \right )}\, \tan \left (d x +c \right )}{\cot \left (d x +c \right )}d x \right ) a b \] Input:

int((a+b*tan(d*x+c))^2/cot(d*x+c)^(1/2),x)
 

Output:

int(sqrt(cot(c + d*x))/cot(c + d*x),x)*a**2 + int((sqrt(cot(c + d*x))*tan( 
c + d*x)**2)/cot(c + d*x),x)*b**2 + 2*int((sqrt(cot(c + d*x))*tan(c + d*x) 
)/cot(c + d*x),x)*a*b