\(\int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx\) [838]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 323 \[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=-\frac {(a-b) \left (a^2+4 a b+b^2\right ) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d}+\frac {(a-b) \left (a^2+4 a b+b^2\right ) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d}-\frac {\sqrt {a} \left (a^4+18 a^2 b^2-15 b^4\right ) \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{4 b^{3/2} \left (a^2+b^2\right )^3 d}+\frac {(a+b) \left (a^2-4 a b+b^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\cot (c+d x)}}{1+\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d}+\frac {a \sqrt {\cot (c+d x)}}{2 \left (a^2+b^2\right ) d (b+a \cot (c+d x))^2}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{4 b \left (a^2+b^2\right )^2 d (b+a \cot (c+d x))} \] Output:

1/2*(a-b)*(a^2+4*a*b+b^2)*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))*2^(1/2)/(a^2 
+b^2)^3/d+1/2*(a-b)*(a^2+4*a*b+b^2)*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))*2^( 
1/2)/(a^2+b^2)^3/d-1/4*a^(1/2)*(a^4+18*a^2*b^2-15*b^4)*arctan(a^(1/2)*cot( 
d*x+c)^(1/2)/b^(1/2))/b^(3/2)/(a^2+b^2)^3/d+1/2*(a+b)*(a^2-4*a*b+b^2)*arct 
anh(2^(1/2)*cot(d*x+c)^(1/2)/(1+cot(d*x+c)))*2^(1/2)/(a^2+b^2)^3/d+1/2*a*c 
ot(d*x+c)^(1/2)/(a^2+b^2)/d/(b+a*cot(d*x+c))^2-1/4*a*(a^2-7*b^2)*cot(d*x+c 
)^(1/2)/b/(a^2+b^2)^2/d/(b+a*cot(d*x+c))
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 1.78 (sec) , antiderivative size = 398, normalized size of antiderivative = 1.23 \[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=-\frac {24 \sqrt {a} \sqrt {b} \left (a^2-3 b^2\right ) \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )-24 a \left (a^2-3 b^2\right ) \sqrt {\cot (c+d x)}+\frac {24 \sqrt {a} \sqrt {b} \left (a^2+b^2\right ) \left (-\sqrt {a} \sqrt {b} \sqrt {\cot (c+d x)}+\arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right ) (b+a \cot (c+d x))\right )}{b+a \cot (c+d x)}+8 b \left (-3 a^2+b^2\right ) \cot ^{\frac {3}{2}}(c+d x) \operatorname {Hypergeometric2F1}\left (\frac {3}{4},1,\frac {7}{4},-\cot ^2(c+d x)\right )+\frac {8 a^2 \left (a^2+b^2\right )^2 \cot ^{\frac {3}{2}}(c+d x) \operatorname {Hypergeometric2F1}\left (\frac {3}{2},3,\frac {5}{2},-\frac {a \cot (c+d x)}{b}\right )}{b^3}+3 a \left (a^2-3 b^2\right ) \left (2 \sqrt {2} \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-2 \sqrt {2} \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )+8 \sqrt {\cot (c+d x)}+\sqrt {2} \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )-\sqrt {2} \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )\right )}{12 \left (a^2+b^2\right )^3 d} \] Input:

Integrate[1/(Cot[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^3),x]
 

Output:

-1/12*(24*Sqrt[a]*Sqrt[b]*(a^2 - 3*b^2)*ArcTan[(Sqrt[a]*Sqrt[Cot[c + d*x]] 
)/Sqrt[b]] - 24*a*(a^2 - 3*b^2)*Sqrt[Cot[c + d*x]] + (24*Sqrt[a]*Sqrt[b]*( 
a^2 + b^2)*(-(Sqrt[a]*Sqrt[b]*Sqrt[Cot[c + d*x]]) + ArcTan[(Sqrt[a]*Sqrt[C 
ot[c + d*x]])/Sqrt[b]]*(b + a*Cot[c + d*x])))/(b + a*Cot[c + d*x]) + 8*b*( 
-3*a^2 + b^2)*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/4, 1, 7/4, -Cot[c + d 
*x]^2] + (8*a^2*(a^2 + b^2)^2*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/2, 3, 
 5/2, -((a*Cot[c + d*x])/b)])/b^3 + 3*a*(a^2 - 3*b^2)*(2*Sqrt[2]*ArcTan[1 
- Sqrt[2]*Sqrt[Cot[c + d*x]]] - 2*Sqrt[2]*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + 
d*x]]] + 8*Sqrt[Cot[c + d*x]] + Sqrt[2]*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] 
 + Cot[c + d*x]] - Sqrt[2]*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d* 
x]]))/((a^2 + b^2)^3*d)
 

Rubi [A] (warning: unable to verify)

Time = 1.78 (sec) , antiderivative size = 356, normalized size of antiderivative = 1.10, number of steps used = 27, number of rules used = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.130, Rules used = {3042, 4156, 3042, 4051, 27, 3042, 4132, 27, 3042, 4136, 27, 3042, 4017, 25, 27, 1482, 1476, 1082, 217, 1479, 25, 27, 1103, 4117, 73, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cot (c+d x)^{5/2} (a+b \tan (c+d x))^3}dx\)

\(\Big \downarrow \) 4156

\(\displaystyle \int \frac {\sqrt {\cot (c+d x)}}{(a \cot (c+d x)+b)^3}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}{\left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )^3}dx\)

\(\Big \downarrow \) 4051

\(\displaystyle \frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}-\frac {\int -\frac {-3 a \cot ^2(c+d x)+4 b \cot (c+d x)+a}{2 \sqrt {\cot (c+d x)} (b+a \cot (c+d x))^2}dx}{2 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {-3 a \cot ^2(c+d x)+4 b \cot (c+d x)+a}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))^2}dx}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {-3 a \tan \left (c+d x+\frac {\pi }{2}\right )^2-4 b \tan \left (c+d x+\frac {\pi }{2}\right )+a}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 4132

\(\displaystyle \frac {-\frac {\int -\frac {a \left (a^2-7 b^2\right ) \cot ^2(c+d x)-8 b \left (a^2-b^2\right ) \cot (c+d x)+a \left (a^2+9 b^2\right )}{2 \sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {a \left (a^2-7 b^2\right ) \cot ^2(c+d x)-8 b \left (a^2-b^2\right ) \cot (c+d x)+a \left (a^2+9 b^2\right )}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {a \left (a^2-7 b^2\right ) \tan \left (c+d x+\frac {\pi }{2}\right )^2+8 b \left (a^2-b^2\right ) \tan \left (c+d x+\frac {\pi }{2}\right )+a \left (a^2+9 b^2\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 4136

\(\displaystyle \frac {\frac {\frac {\int -\frac {8 \left (\left (3 a^2-b^2\right ) \cot (c+d x) b^2+a \left (a^2-3 b^2\right ) b\right )}{\sqrt {\cot (c+d x)}}dx}{a^2+b^2}+\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {\cot ^2(c+d x)+1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {\cot ^2(c+d x)+1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{a^2+b^2}-\frac {8 \int \frac {\left (3 a^2-b^2\right ) \cot (c+d x) b^2+a \left (a^2-3 b^2\right ) b}{\sqrt {\cot (c+d x)}}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {8 \int \frac {a b \left (a^2-3 b^2\right )-b^2 \left (3 a^2-b^2\right ) \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {\frac {\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {16 \int -\frac {b \left (a \left (a^2-3 b^2\right )+b \left (3 a^2-b^2\right ) \cot (c+d x)\right )}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {16 \int \frac {b \left (a \left (a^2-3 b^2\right )+b \left (3 a^2-b^2\right ) \cot (c+d x)\right )}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}+\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {16 b \int \frac {a \left (a^2-3 b^2\right )+b \left (3 a^2-b^2\right ) \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}+\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {\frac {\frac {16 b \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {\cot (c+d x)+1}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d \left (a^2+b^2\right )}+\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\frac {\frac {16 b \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )\right )}{d \left (a^2+b^2\right )}+\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {\frac {16 b \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {\frac {16 b \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\frac {\frac {16 b \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {16 b \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {16 b \left (\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\cot (c+d x)}+1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )+\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}+\frac {16 b \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {\frac {\frac {a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}d(-\cot (c+d x))}{d \left (a^2+b^2\right )}+\frac {16 b \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\frac {\frac {16 b \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {2 a \left (a^4+18 a^2 b^2-15 b^4\right ) \int \frac {1}{a \cot ^2(c+d x)+b}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}+\frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {a \sqrt {\cot (c+d x)}}{2 d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}+\frac {\frac {\frac {16 b \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {2 \sqrt {a} \left (a^4+18 a^2 b^2-15 b^4\right ) \arctan \left (\frac {\sqrt {a} \cot (c+d x)}{\sqrt {b}}\right )}{\sqrt {b} d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}-\frac {a \left (a^2-7 b^2\right ) \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}}{4 \left (a^2+b^2\right )}\)

Input:

Int[1/(Cot[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^3),x]
 

Output:

(a*Sqrt[Cot[c + d*x]])/(2*(a^2 + b^2)*d*(b + a*Cot[c + d*x])^2) + (-((a*(a 
^2 - 7*b^2)*Sqrt[Cot[c + d*x]])/(b*(a^2 + b^2)*d*(b + a*Cot[c + d*x]))) + 
((2*Sqrt[a]*(a^4 + 18*a^2*b^2 - 15*b^4)*ArcTan[(Sqrt[a]*Cot[c + d*x])/Sqrt 
[b]])/(Sqrt[b]*(a^2 + b^2)*d) + (16*b*(((a - b)*(a^2 + 4*a*b + b^2)*(-(Arc 
Tan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]) + ArcTan[1 + Sqrt[2]*Sqrt[Cot 
[c + d*x]]]/Sqrt[2]))/2 + ((a + b)*(a^2 - 4*a*b + b^2)*(-1/2*Log[1 - Sqrt[ 
2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[Cot[c 
 + d*x]] + Cot[c + d*x]]/(2*Sqrt[2])))/2))/((a^2 + b^2)*d))/(2*b*(a^2 + b^ 
2)))/(4*(a^2 + b^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4051
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a + b*Tan[e + f*x])^(m + 1)*((c + 
d*Tan[e + f*x])^n/(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(a^2 + b^2 
))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*c 
*(m + 1) - b*d*n - (b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(m + n + 1)*Tan[e 
 + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] 
&& NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && GtQ[n, 0] && Int 
egerQ[2*m]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4136
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^ 
n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[ 
(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*((1 + Tan[ 
e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, 
 C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] & 
&  !GtQ[n, 0] &&  !LeQ[n, -1]
 

rule 4156
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Cot[e + f*x])^(m - n*p 
)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2059\) vs. \(2(286)=572\).

Time = 0.27 (sec) , antiderivative size = 2060, normalized size of antiderivative = 6.38

method result size
derivativedivides \(\text {Expression too large to display}\) \(2060\)
default \(\text {Expression too large to display}\) \(2060\)

Input:

int(1/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^3,x,method=_RETURNVERBOSE)
 

Output:

1/4/d*(arctan(b*tan(d*x+c)^(1/2)/(a*b)^(1/2))*a^7+tan(d*x+c)^(3/2)*(a*b)^( 
1/2)*a^5*b+10*tan(d*x+c)^(3/2)*(a*b)^(1/2)*a^3*b^3+9*tan(d*x+c)^(3/2)*(a*b 
)^(1/2)*a*b^5+arctan(b*tan(d*x+c)^(1/2)/(a*b)^(1/2))*a^5*b^2*tan(d*x+c)^2+ 
18*arctan(b*tan(d*x+c)^(1/2)/(a*b)^(1/2))*a^3*b^4*tan(d*x+c)^2-15*arctan(b 
*tan(d*x+c)^(1/2)/(a*b)^(1/2))*a*b^6*tan(d*x+c)^2+2*arctan(b*tan(d*x+c)^(1 
/2)/(a*b)^(1/2))*a^6*b*tan(d*x+c)+36*arctan(b*tan(d*x+c)^(1/2)/(a*b)^(1/2) 
)*a^4*b^3*tan(d*x+c)-30*arctan(b*tan(d*x+c)^(1/2)/(a*b)^(1/2))*a^2*b^5*tan 
(d*x+c)+6*tan(d*x+c)^(1/2)*(a*b)^(1/2)*a^4*b^2+7*tan(d*x+c)^(1/2)*(a*b)^(1 
/2)*a^2*b^4+2*2^(1/2)*(a*b)^(1/2)*ln(-(tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1/2) 
+1)/(2^(1/2)*tan(d*x+c)^(1/2)-tan(d*x+c)-1))*a*b^5*tan(d*x+c)-2^(1/2)*(a*b 
)^(1/2)*ln(-(2^(1/2)*tan(d*x+c)^(1/2)-tan(d*x+c)-1)/(tan(d*x+c)+2^(1/2)*ta 
n(d*x+c)^(1/2)+1))*a^3*b^3*tan(d*x+c)^2+3*2^(1/2)*(a*b)^(1/2)*ln(-(2^(1/2) 
*tan(d*x+c)^(1/2)-tan(d*x+c)-1)/(tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1/2)+1))*a 
*b^5*tan(d*x+c)^2-6*2^(1/2)*(a*b)^(1/2)*ln(-(tan(d*x+c)+2^(1/2)*tan(d*x+c) 
^(1/2)+1)/(2^(1/2)*tan(d*x+c)^(1/2)-tan(d*x+c)-1))*a^3*b^3*tan(d*x+c)+12*2 
^(1/2)*(a*b)^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*a^2*b^4*tan(d*x+c)+4 
*2^(1/2)*(a*b)^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*a*b^5*tan(d*x+c)-4 
*2^(1/2)*(a*b)^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*a^4*b^2*tan(d*x+c 
)-12*2^(1/2)*(a*b)^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*a^3*b^3*tan(d 
*x+c)+12*2^(1/2)*(a*b)^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*a^2*b^...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2369 vs. \(2 (286) = 572\).

Time = 0.65 (sec) , antiderivative size = 4766, normalized size of antiderivative = 14.76 \[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=\text {Too large to display} \] Input:

integrate(1/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^3,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate(1/cot(d*x+c)**(5/2)/(a+b*tan(d*x+c))**3,x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.36 (sec) , antiderivative size = 415, normalized size of antiderivative = 1.28 \[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=-\frac {\frac {{\left (a^{5} + 18 \, a^{3} b^{2} - 15 \, a b^{4}\right )} \arctan \left (\frac {a}{\sqrt {a b} \sqrt {\tan \left (d x + c\right )}}\right )}{{\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} \sqrt {a b}} - \frac {2 \, \sqrt {2} {\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} {\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt {2} {\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} - \frac {\frac {a^{3} b + 9 \, a b^{3}}{\sqrt {\tan \left (d x + c\right )}} - \frac {a^{4} - 7 \, a^{2} b^{2}}{\tan \left (d x + c\right )^{\frac {3}{2}}}}{a^{4} b^{3} + 2 \, a^{2} b^{5} + b^{7} + \frac {2 \, {\left (a^{5} b^{2} + 2 \, a^{3} b^{4} + a b^{6}\right )}}{\tan \left (d x + c\right )} + \frac {a^{6} b + 2 \, a^{4} b^{3} + a^{2} b^{5}}{\tan \left (d x + c\right )^{2}}}}{4 \, d} \] Input:

integrate(1/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^3,x, algorithm="maxima")
 

Output:

-1/4*((a^5 + 18*a^3*b^2 - 15*a*b^4)*arctan(a/(sqrt(a*b)*sqrt(tan(d*x + c)) 
))/((a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*sqrt(a*b)) - (2*sqrt(2)*(a^3 + 3 
*a^2*b - 3*a*b^2 - b^3)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)) 
)) + 2*sqrt(2)*(a^3 + 3*a^2*b - 3*a*b^2 - b^3)*arctan(-1/2*sqrt(2)*(sqrt(2 
) - 2/sqrt(tan(d*x + c)))) + sqrt(2)*(a^3 - 3*a^2*b - 3*a*b^2 + b^3)*log(s 
qrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - sqrt(2)*(a^3 - 3*a^2*b - 
 3*a*b^2 + b^3)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))/(a^ 
6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6) - ((a^3*b + 9*a*b^3)/sqrt(tan(d*x + c)) - 
 (a^4 - 7*a^2*b^2)/tan(d*x + c)^(3/2))/(a^4*b^3 + 2*a^2*b^5 + b^7 + 2*(a^5 
*b^2 + 2*a^3*b^4 + a*b^6)/tan(d*x + c) + (a^6*b + 2*a^4*b^3 + a^2*b^5)/tan 
(d*x + c)^2))/d
 

Giac [F]

\[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=\int { \frac {1}{{\left (b \tan \left (d x + c\right ) + a\right )}^{3} \cot \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^3,x, algorithm="giac")
 

Output:

integrate(1/((b*tan(d*x + c) + a)^3*cot(d*x + c)^(5/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=\int \frac {1}{{\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^3} \,d x \] Input:

int(1/(cot(c + d*x)^(5/2)*(a + b*tan(c + d*x))^3),x)
 

Output:

int(1/(cot(c + d*x)^(5/2)*(a + b*tan(c + d*x))^3), x)
 

Reduce [F]

\[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=\int \frac {\sqrt {\cot \left (d x +c \right )}}{\cot \left (d x +c \right )^{3} \tan \left (d x +c \right )^{3} b^{3}+3 \cot \left (d x +c \right )^{3} \tan \left (d x +c \right )^{2} a \,b^{2}+3 \cot \left (d x +c \right )^{3} \tan \left (d x +c \right ) a^{2} b +\cot \left (d x +c \right )^{3} a^{3}}d x \] Input:

int(1/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^3,x)
 

Output:

int(sqrt(cot(c + d*x))/(cot(c + d*x)**3*tan(c + d*x)**3*b**3 + 3*cot(c + d 
*x)**3*tan(c + d*x)**2*a*b**2 + 3*cot(c + d*x)**3*tan(c + d*x)*a**2*b + co 
t(c + d*x)**3*a**3),x)