\(\int \cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx\) [848]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 213 \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\frac {(i a-b)^{3/2} \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {(i a+b)^{3/2} \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {8 b \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}{3 d}-\frac {2 a \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}{3 d} \] Output:

(I*a-b)^(3/2)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2) 
)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d+(I*a+b)^(3/2)*arctanh((I*a+b)^(1/2)* 
tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2) 
/d-8/3*b*cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2)/d-2/3*a*cot(d*x+c)^(3/2)* 
(a+b*tan(d*x+c))^(1/2)/d
 

Mathematica [A] (verified)

Time = 0.82 (sec) , antiderivative size = 196, normalized size of antiderivative = 0.92 \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\frac {\cot ^{\frac {3}{2}}(c+d x) \left (-3 \sqrt [4]{-1} \sqrt {-a+i b} (i a+b) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \tan ^{\frac {3}{2}}(c+d x)+3 (-1)^{3/4} (a+i b)^{3/2} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \tan ^{\frac {3}{2}}(c+d x)-2 \sqrt {a+b \tan (c+d x)} (a+4 b \tan (c+d x))\right )}{3 d} \] Input:

Integrate[Cot[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^(3/2),x]
 

Output:

(Cot[c + d*x]^(3/2)*(-3*(-1)^(1/4)*Sqrt[-a + I*b]*(I*a + b)*ArcTan[((-1)^( 
1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Tan[c + 
d*x]^(3/2) + 3*(-1)^(3/4)*(a + I*b)^(3/2)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b] 
*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Tan[c + d*x]^(3/2) - 2*Sqrt 
[a + b*Tan[c + d*x]]*(a + 4*b*Tan[c + d*x])))/(3*d)
 

Rubi [A] (verified)

Time = 1.27 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.05, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3042, 4729, 3042, 4050, 27, 3042, 4132, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot (c+d x)^{5/2} (a+b \tan (c+d x))^{3/2}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {(a+b \tan (c+d x))^{3/2}}{\tan ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {(a+b \tan (c+d x))^{3/2}}{\tan (c+d x)^{5/2}}dx\)

\(\Big \downarrow \) 4050

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2}{3} \int -\frac {-2 a b \tan ^2(c+d x)-3 \left (a^2-b^2\right ) \tan (c+d x)+4 a b}{2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {2 a \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{3} \int \frac {-2 a b \tan ^2(c+d x)-3 \left (a^2-b^2\right ) \tan (c+d x)+4 a b}{\tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {2 a \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{3} \int \frac {-2 a b \tan (c+d x)^2-3 \left (a^2-b^2\right ) \tan (c+d x)+4 a b}{\tan (c+d x)^{3/2} \sqrt {a+b \tan (c+d x)}}dx-\frac {2 a \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4132

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{3} \left (-\frac {2 \int \frac {3 \left (2 b \tan (c+d x) a^2+\left (a^2-b^2\right ) a\right )}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {8 b \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{3} \left (-\frac {3 \int \frac {2 b \tan (c+d x) a^2+\left (a^2-b^2\right ) a}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {8 b \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{3} \left (-\frac {3 \int \frac {2 b \tan (c+d x) a^2+\left (a^2-b^2\right ) a}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {8 b \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4099

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 a \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (-\frac {8 b \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {3 \left (\frac {1}{2} a (a-i b)^2 \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a (a+i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a}\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 a \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (-\frac {8 b \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {3 \left (\frac {1}{2} a (a-i b)^2 \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a (a+i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a}\right )\right )\)

\(\Big \downarrow \) 4098

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 a \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (-\frac {8 b \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {3 \left (\frac {a (a-i b)^2 \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+\frac {a (a+i b)^2 \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}\right )}{a}\right )\right )\)

\(\Big \downarrow \) 104

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 a \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (-\frac {8 b \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {3 \left (\frac {a (a-i b)^2 \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a (a+i b)^2 \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}\right )}{a}\right )\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 a \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (-\frac {8 b \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {3 \left (\frac {a (a-i b)^2 \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a (a+i b)^2 \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}\right )}{a}\right )\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 a \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (-\frac {8 b \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {3 \left (\frac {a (a+i b)^2 \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {a (a-i b)^2 \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )}{a}\right )\right )\)

Input:

Int[Cot[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^(3/2),x]
 

Output:

Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((-2*a*Sqrt[a + b*Tan[c + d*x]])/(3* 
d*Tan[c + d*x]^(3/2)) + ((-3*((a*(a + I*b)^2*ArcTan[(Sqrt[I*a - b]*Sqrt[Ta 
n[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a - b]*d) + (a*(a - I*b)^2 
*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sq 
rt[I*a + b]*d)))/a - (8*b*Sqrt[a + b*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]) 
)/3)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4050
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*(a + b*Tan[e + f*x])^(m + 
 1)*((c + d*Tan[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/((m 
 + 1)*(a^2 + b^2))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^ 
(n - 2)*Simp[a*c^2*(m + 1) + a*d^2*(n - 1) + b*c*d*(m - n + 2) - (b*c^2 - 2 
*a*c*d - b*d^2)*(m + 1)*Tan[e + f*x] - d*(b*c - a*d)*(m + n)*Tan[e + f*x]^2 
, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^ 
2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegerQ[ 
2*m]
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1843\) vs. \(2(173)=346\).

Time = 3.22 (sec) , antiderivative size = 1844, normalized size of antiderivative = 8.66

method result size
default \(\text {Expression too large to display}\) \(1844\)

Input:

int(cot(d*x+c)^(5/2)*(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

-1/3/d*2^(1/2)/(-b+(a^2+b^2)^(1/2))^(1/2)*cot(d*x+c)^(5/2)*(1-cos(d*x+c))* 
(a+b*tan(d*x+c))^(1/2)*(3*(b+(a^2+b^2)^(1/2))^(1/2)*(a^2+b^2)^(1/2)*ln(1/( 
1-cos(d*x+c))*(-a*(1-cos(d*x+c))^2*csc(d*x+c)+2*(a^2+b^2)^(1/2)*(1-cos(d*x 
+c))+2*2^(1/2)*((a*cos(d*x+c)+b*sin(d*x+c))*sin(d*x+c)/(cos(d*x+c)+1)^2)^( 
1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*sin(d*x+c)+2*b*(1-cos(d*x+c))+sin(d*x+c)*a) 
)*(1-cos(d*x+c))^2*(-b+(a^2+b^2)^(1/2))^(1/2)*csc(d*x+c)^2-3*(b+(a^2+b^2)^ 
(1/2))^(1/2)*(a^2+b^2)^(1/2)*ln(1/(1-cos(d*x+c))*(-a*(1-cos(d*x+c))^2*csc( 
d*x+c)+2*(a^2+b^2)^(1/2)*(1-cos(d*x+c))-2*2^(1/2)*((a*cos(d*x+c)+b*sin(d*x 
+c))*sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*sin(d*x+ 
c)+2*b*(1-cos(d*x+c))+sin(d*x+c)*a))*(1-cos(d*x+c))^2*(-b+(a^2+b^2)^(1/2)) 
^(1/2)*csc(d*x+c)^2-6*(b+(a^2+b^2)^(1/2))^(1/2)*b*ln(1/(1-cos(d*x+c))*(-a* 
(1-cos(d*x+c))^2*csc(d*x+c)+2*(a^2+b^2)^(1/2)*(1-cos(d*x+c))+2*2^(1/2)*((a 
*cos(d*x+c)+b*sin(d*x+c))*sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(b+(a^2+b^2)^ 
(1/2))^(1/2)*sin(d*x+c)+2*b*(1-cos(d*x+c))+sin(d*x+c)*a))*(1-cos(d*x+c))^2 
*(-b+(a^2+b^2)^(1/2))^(1/2)*csc(d*x+c)^2+6*(b+(a^2+b^2)^(1/2))^(1/2)*ln(1/ 
(1-cos(d*x+c))*(-a*(1-cos(d*x+c))^2*csc(d*x+c)+2*(a^2+b^2)^(1/2)*(1-cos(d* 
x+c))-2*2^(1/2)*((a*cos(d*x+c)+b*sin(d*x+c))*sin(d*x+c)/(cos(d*x+c)+1)^2)^ 
(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*sin(d*x+c)+2*b*(1-cos(d*x+c))+sin(d*x+c)*a 
))*b*(1-cos(d*x+c))^2*(-b+(a^2+b^2)^(1/2))^(1/2)*csc(d*x+c)^2-6*arctan(1/( 
-b+(a^2+b^2)^(1/2))^(1/2)*((b+(a^2+b^2)^(1/2))^(1/2)*(-cot(d*x+c)+csc(d...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3631 vs. \(2 (169) = 338\).

Time = 0.36 (sec) , antiderivative size = 3631, normalized size of antiderivative = 17.05 \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\text {Too large to display} \] Input:

integrate(cot(d*x+c)^(5/2)*(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\text {Timed out} \] Input:

integrate(cot(d*x+c)**(5/2)*(a+b*tan(d*x+c))**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\int { {\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cot \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(cot(d*x+c)^(5/2)*(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

integrate((b*tan(d*x + c) + a)^(3/2)*cot(d*x + c)^(5/2), x)
 

Giac [F(-2)]

Exception generated. \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cot(d*x+c)^(5/2)*(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{%%%{1,[0,9,3]%%%}+%%%{4,[0,7,3]%%%}+%%%{6,[0,5,3]%%%}+%%%{ 
4,[0,3,3]
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2} \,d x \] Input:

int(cot(c + d*x)^(5/2)*(a + b*tan(c + d*x))^(3/2),x)
 

Output:

int(cot(c + d*x)^(5/2)*(a + b*tan(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\int \cot \left (d x +c \right )^{\frac {5}{2}} \left (a +\tan \left (d x +c \right ) b \right )^{\frac {3}{2}}d x \] Input:

int(cot(d*x+c)^(5/2)*(a+b*tan(d*x+c))^(3/2),x)
 

Output:

int(cot(d*x+c)^(5/2)*(a+b*tan(d*x+c))^(3/2),x)