\(\int \frac {(a+b \tan (c+d x))^{3/2}}{\cot ^{\frac {3}{2}}(c+d x)} \, dx\) [852]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 286 \[ \int \frac {(a+b \tan (c+d x))^{3/2}}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=\frac {(i a-b)^{3/2} \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {\left (3 a^2-8 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{4 \sqrt {b} d}+\frac {(i a+b)^{3/2} \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {3 a \sqrt {a+b \tan (c+d x)}}{4 d \sqrt {\cot (c+d x)}}+\frac {(a+b \tan (c+d x))^{3/2}}{2 d \sqrt {\cot (c+d x)}} \] Output:

(I*a-b)^(3/2)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2) 
)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d+1/4*(3*a^2-8*b^2)*arctanh(b^(1/2)*ta 
n(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/b 
^(1/2)/d+(I*a+b)^(3/2)*arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x 
+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d+3/4*a*(a+b*tan(d*x+c))^(1/ 
2)/d/cot(d*x+c)^(1/2)+1/2*(a+b*tan(d*x+c))^(3/2)/d/cot(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 2.43 (sec) , antiderivative size = 341, normalized size of antiderivative = 1.19 \[ \int \frac {(a+b \tan (c+d x))^{3/2}}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (\left (3 a^2-8 b^2\right ) \text {arcsinh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right ) (a+b \tan (c+d x))+\sqrt {a} \sqrt {b} \sqrt {1+\frac {b \tan (c+d x)}{a}} \left (-4 \sqrt [4]{-1} \sqrt {-a+i b} (i a+b) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {a+b \tan (c+d x)}+4 (-1)^{3/4} (a+i b)^{3/2} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {a+b \tan (c+d x)}+\sqrt {\tan (c+d x)} \left (5 a^2+7 a b \tan (c+d x)+2 b^2 \tan ^2(c+d x)\right )\right )\right )}{4 \sqrt {a} \sqrt {b} d \sqrt {a+b \tan (c+d x)} \sqrt {1+\frac {b \tan (c+d x)}{a}}} \] Input:

Integrate[(a + b*Tan[c + d*x])^(3/2)/Cot[c + d*x]^(3/2),x]
 

Output:

(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((3*a^2 - 8*b^2)*ArcSinh[(Sqrt[b]*S 
qrt[Tan[c + d*x]])/Sqrt[a]]*(a + b*Tan[c + d*x]) + Sqrt[a]*Sqrt[b]*Sqrt[1 
+ (b*Tan[c + d*x])/a]*(-4*(-1)^(1/4)*Sqrt[-a + I*b]*(I*a + b)*ArcTan[((-1) 
^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[a 
 + b*Tan[c + d*x]] + 4*(-1)^(3/4)*(a + I*b)^(3/2)*ArcTan[((-1)^(1/4)*Sqrt[ 
a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[a + b*Tan[c + 
d*x]] + Sqrt[Tan[c + d*x]]*(5*a^2 + 7*a*b*Tan[c + d*x] + 2*b^2*Tan[c + d*x 
]^2))))/(4*Sqrt[a]*Sqrt[b]*d*Sqrt[a + b*Tan[c + d*x]]*Sqrt[1 + (b*Tan[c + 
d*x])/a])
 

Rubi [A] (verified)

Time = 1.30 (sec) , antiderivative size = 247, normalized size of antiderivative = 0.86, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3042, 4729, 3042, 4053, 27, 3042, 4130, 27, 3042, 4138, 2035, 2257, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \tan (c+d x))^{3/2}}{\cot ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \tan (c+d x))^{3/2}}{\cot (c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \tan (c+d x)^{3/2} (a+b \tan (c+d x))^{3/2}dx\)

\(\Big \downarrow \) 4053

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} \int -\frac {\sqrt {a+b \tan (c+d x)} \left (-3 a \tan ^2(c+d x)+4 b \tan (c+d x)+a\right )}{2 \sqrt {\tan (c+d x)}}dx+\frac {\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 d}-\frac {1}{4} \int \frac {\sqrt {a+b \tan (c+d x)} \left (-3 a \tan ^2(c+d x)+4 b \tan (c+d x)+a\right )}{\sqrt {\tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 d}-\frac {1}{4} \int \frac {\sqrt {a+b \tan (c+d x)} \left (-3 a \tan (c+d x)^2+4 b \tan (c+d x)+a\right )}{\sqrt {\tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 4130

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} \left (\frac {3 a \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{d}-\int \frac {5 a^2+16 b \tan (c+d x) a-\left (3 a^2-8 b^2\right ) \tan ^2(c+d x)}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )+\frac {\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} \left (\frac {3 a \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{d}-\frac {1}{2} \int \frac {5 a^2+16 b \tan (c+d x) a-\left (3 a^2-8 b^2\right ) \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )+\frac {\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} \left (\frac {3 a \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{d}-\frac {1}{2} \int \frac {5 a^2+16 b \tan (c+d x) a-\left (3 a^2-8 b^2\right ) \tan (c+d x)^2}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )+\frac {\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 4138

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} \left (\frac {3 a \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{d}-\frac {\int \frac {5 a^2+16 b \tan (c+d x) a-\left (3 a^2-8 b^2\right ) \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )}d\tan (c+d x)}{2 d}\right )+\frac {\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 2035

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} \left (\frac {3 a \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{d}-\frac {\int \frac {5 a^2+16 b \tan (c+d x) a-\left (3 a^2-8 b^2\right ) \tan ^2(c+d x)}{\sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )}d\sqrt {\tan (c+d x)}}{d}\right )+\frac {\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 2257

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{4} \left (\frac {3 a \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{d}-\frac {\int \left (\frac {8 b^2-3 a^2}{\sqrt {a+b \tan (c+d x)}}+\frac {8 \left (a^2+2 b \tan (c+d x) a-b^2\right )}{\sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )}\right )d\sqrt {\tan (c+d x)}}{d}\right )+\frac {\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 d}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}{2 d}+\frac {1}{4} \left (\frac {3 a \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{d}-\frac {-\frac {\left (3 a^2-8 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {b}}-4 (-b+i a)^{3/2} \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )-4 (b+i a)^{3/2} \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}\right )\right )\)

Input:

Int[(a + b*Tan[c + d*x])^(3/2)/Cot[c + d*x]^(3/2),x]
 

Output:

Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((Sqrt[Tan[c + d*x]]*(a + b*Tan[c + 
d*x])^(3/2))/(2*d) + (-((-4*(I*a - b)^(3/2)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan 
[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]] - ((3*a^2 - 8*b^2)*ArcTanh[(Sqrt[b]* 
Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[b] - 4*(I*a + b)^(3/2) 
*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d) 
+ (3*a*Sqrt[Tan[c + d*x]]*Sqrt[a + b*Tan[c + d*x]])/d)/4)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2257
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol 
] :> Int[ExpandIntegrand[Px*(d + e*x^2)^q*(a + c*x^4)^p, x], x] /; FreeQ[{a 
, c, d, e, q}, x] && PolyQ[Px, x] && IntegerQ[p]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4053
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a + b*Tan[e + f*x])^(m - 1)*((c + 
d*Tan[e + f*x])^n/(f*(m + n - 1))), x] + Simp[1/(m + n - 1)   Int[(a + b*Ta 
n[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a^2*c*(m + n - 1) - b 
*(b*c*(m - 1) + a*d*n) + (2*a*b*c + a^2*d - b^2*d)*(m + n - 1)*Tan[e + f*x] 
 + b*(b*c*n + a*d*(2*m + n - 2))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, 
 c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2 
, 0] && GtQ[m, 1] && GtQ[n, 0] && IntegerQ[2*n]
 

rule 4130
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_. 
) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*(a + b*Tan[e + f*x])^m*((c + d*Tan[ 
e + f*x])^(n + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1))   Int[(a 
+ b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n + 1) - C 
*(b*c*m + a*d*(n + 1)) + d*(A*b + a*B - b*C)*(m + n + 1)*Tan[e + f*x] - (C* 
m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, 
b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && 
 NeQ[c^2 + d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[ 
c, 0] && NeQ[a, 0])))
 

rule 4138
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, S 
imp[ff/f   Subst[Int[(a + b*ff*x)^m*(c + d*ff*x)^n*((A + B*ff*x + C*ff^2*x^ 
2)/(1 + ff^2*x^2)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f 
, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + 
 d^2, 0]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1977\) vs. \(2(232)=464\).

Time = 4.06 (sec) , antiderivative size = 1978, normalized size of antiderivative = 6.92

method result size
default \(\text {Expression too large to display}\) \(1978\)

Input:

int((a+b*tan(d*x+c))^(3/2)/cot(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/8/d*2^(1/2)/(-b+(a^2+b^2)^(1/2))^(1/2)/b^(1/2)*(4*cos(d*x+c)^2*b^(3/2)*( 
b+(a^2+b^2)^(1/2))^(1/2)*(-b+(a^2+b^2)^(1/2))^(1/2)*ln(-(2*2^(1/2)*((a*cos 
(d*x+c)+b*sin(d*x+c))*sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(b+(a^2+b^2)^(1/2 
))^(1/2)*sin(d*x+c)-a*cot(d*x+c)*cos(d*x+c)+2*a*cot(d*x+c)-2*(a^2+b^2)^(1/ 
2)*cos(d*x+c)-2*cos(d*x+c)*b+sin(d*x+c)*a-a*csc(d*x+c)+2*(a^2+b^2)^(1/2)+2 
*b)/(-1+cos(d*x+c)))-2*cos(d*x+c)^2*b^(1/2)*(a^2+b^2)^(1/2)*(b+(a^2+b^2)^( 
1/2))^(1/2)*(-b+(a^2+b^2)^(1/2))^(1/2)*ln(-(2*2^(1/2)*((a*cos(d*x+c)+b*sin 
(d*x+c))*sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*sin( 
d*x+c)-a*cot(d*x+c)*cos(d*x+c)+2*a*cot(d*x+c)-2*(a^2+b^2)^(1/2)*cos(d*x+c) 
-2*cos(d*x+c)*b+sin(d*x+c)*a-a*csc(d*x+c)+2*(a^2+b^2)^(1/2)+2*b)/(-1+cos(d 
*x+c)))-4*cos(d*x+c)^2*b^(3/2)*(b+(a^2+b^2)^(1/2))^(1/2)*(-b+(a^2+b^2)^(1/ 
2))^(1/2)*ln(-(a*cot(d*x+c)*cos(d*x+c)+2*2^(1/2)*((a*cos(d*x+c)+b*sin(d*x+ 
c))*sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*sin(d*x+c 
)-2*a*cot(d*x+c)+2*(a^2+b^2)^(1/2)*cos(d*x+c)+2*cos(d*x+c)*b-sin(d*x+c)*a+ 
a*csc(d*x+c)-2*(a^2+b^2)^(1/2)-2*b)/(-1+cos(d*x+c)))+2*cos(d*x+c)^2*b^(1/2 
)*(a^2+b^2)^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*(-b+(a^2+b^2)^(1/2))^(1/2)*ln( 
-(a*cot(d*x+c)*cos(d*x+c)+2*2^(1/2)*((a*cos(d*x+c)+b*sin(d*x+c))*sin(d*x+c 
)/(cos(d*x+c)+1)^2)^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*sin(d*x+c)-2*a*cot(d*x 
+c)+2*(a^2+b^2)^(1/2)*cos(d*x+c)+2*cos(d*x+c)*b-sin(d*x+c)*a+a*csc(d*x+c)- 
2*(a^2+b^2)^(1/2)-2*b)/(-1+cos(d*x+c)))+4*cos(d*x+c)^2*b^(5/2)*arctan((...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3781 vs. \(2 (228) = 456\).

Time = 0.92 (sec) , antiderivative size = 7599, normalized size of antiderivative = 26.57 \[ \int \frac {(a+b \tan (c+d x))^{3/2}}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+b*tan(d*x+c))^(3/2)/cot(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {(a+b \tan (c+d x))^{3/2}}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\cot ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((a+b*tan(d*x+c))**(3/2)/cot(d*x+c)**(3/2),x)
 

Output:

Integral((a + b*tan(c + d*x))**(3/2)/cot(c + d*x)**(3/2), x)
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {(a+b \tan (c+d x))^{3/2}}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cot \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+b*tan(d*x+c))^(3/2)/cot(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

integrate((b*tan(d*x + c) + a)^(3/2)/cot(d*x + c)^(3/2), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+b \tan (c+d x))^{3/2}}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+b*tan(d*x+c))^(3/2)/cot(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{%%%{1,[0,9,3]%%%}+%%%{4,[0,7,3]%%%}+%%%{6,[0,5,3]%%%}+%%%{ 
4,[0,3,3]
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \tan (c+d x))^{3/2}}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}}{{\mathrm {cot}\left (c+d\,x\right )}^{3/2}} \,d x \] Input:

int((a + b*tan(c + d*x))^(3/2)/cot(c + d*x)^(3/2),x)
 

Output:

int((a + b*tan(c + d*x))^(3/2)/cot(c + d*x)^(3/2), x)
 

Reduce [F]

\[ \int \frac {(a+b \tan (c+d x))^{3/2}}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {a +\tan \left (d x +c \right ) b}\, \sqrt {\cot \left (d x +c \right )}\, \tan \left (d x +c \right )}{\cot \left (d x +c \right )^{2}}d x \right ) b +\left (\int \frac {\sqrt {a +\tan \left (d x +c \right ) b}\, \sqrt {\cot \left (d x +c \right )}}{\cot \left (d x +c \right )^{2}}d x \right ) a \] Input:

int((a+b*tan(d*x+c))^(3/2)/cot(d*x+c)^(3/2),x)
 

Output:

int((sqrt(tan(c + d*x)*b + a)*sqrt(cot(c + d*x))*tan(c + d*x))/cot(c + d*x 
)**2,x)*b + int((sqrt(tan(c + d*x)*b + a)*sqrt(cot(c + d*x)))/cot(c + d*x) 
**2,x)*a