\(\int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx\) [871]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 194 \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=-\frac {i \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a-b)^{3/2} d}-\frac {i \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a+b)^{3/2} d}+\frac {2 a}{\left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}} \] Output:

-I*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c 
)^(1/2)*tan(d*x+c)^(1/2)/(I*a-b)^(3/2)/d-I*arctanh((I*a+b)^(1/2)*tan(d*x+c 
)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a+b)^ 
(3/2)/d+2*a/(a^2+b^2)/d/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.18 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.04 \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\frac {\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (-\frac {(-1)^{3/4} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(-a+i b)^{3/2}}+\frac {\frac {\sqrt [4]{-1} (i a+b) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(a+i b)^{3/2}}+\frac {2 a \sqrt {\tan (c+d x)}}{(a+i b) \sqrt {a+b \tan (c+d x)}}}{a-i b}\right )}{d} \] Input:

Integrate[1/(Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^(3/2)),x]
 

Output:

(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-(((-1)^(3/4)*ArcTan[((-1)^(1/4)*S 
qrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(-a + I*b)^(3 
/2)) + (((-1)^(1/4)*(I*a + b)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c 
+ d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(a + I*b)^(3/2) + (2*a*Sqrt[Tan[c + d* 
x]])/((a + I*b)*Sqrt[a + b*Tan[c + d*x]]))/(a - I*b)))/d
 

Rubi [A] (verified)

Time = 0.96 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.01, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 4729, 3042, 4050, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cot (c+d x)^{3/2} (a+b \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\tan ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\tan (c+d x)^{3/2}}{(a+b \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4050

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 a \sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {2 \int \frac {a-b \tan (c+d x)}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 a \sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {\int \frac {a-b \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 a \sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {\int \frac {a-b \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 4099

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 a \sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {\frac {1}{2} (a-i b) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} (a+i b) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 a \sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {\frac {1}{2} (a-i b) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} (a+i b) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 4098

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 a \sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {\frac {(a+i b) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+\frac {(a-i b) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}}{a^2+b^2}\right )\)

\(\Big \downarrow \) 104

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 a \sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {\frac {(a-i b) \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {(a+i b) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}}{a^2+b^2}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 a \sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {\frac {(a+i b) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {(a-i b) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}}{a^2+b^2}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 a \sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {\frac {(a-i b) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {(a+i b) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}}{a^2+b^2}\right )\)

Input:

Int[1/(Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^(3/2)),x]
 

Output:

Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-((((a - I*b)*ArcTan[(Sqrt[I*a - b] 
*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a - b]*d) + ((a + 
I*b)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]) 
/(Sqrt[I*a + b]*d))/(a^2 + b^2)) + (2*a*Sqrt[Tan[c + d*x]])/((a^2 + b^2)*d 
*Sqrt[a + b*Tan[c + d*x]]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4050
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*(a + b*Tan[e + f*x])^(m + 
 1)*((c + d*Tan[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/((m 
 + 1)*(a^2 + b^2))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^ 
(n - 2)*Simp[a*c^2*(m + 1) + a*d^2*(n - 1) + b*c*d*(m - n + 2) - (b*c^2 - 2 
*a*c*d - b*d^2)*(m + 1)*Tan[e + f*x] - d*(b*c - a*d)*(m + n)*Tan[e + f*x]^2 
, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^ 
2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegerQ[ 
2*m]
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2081\) vs. \(2(160)=320\).

Time = 4.16 (sec) , antiderivative size = 2082, normalized size of antiderivative = 10.73

method result size
default \(\text {Expression too large to display}\) \(2082\)

Input:

int(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/8/d/a/(a^2+b^2)^(3/2)/(-b+(a^2+b^2)^(1/2))^(1/2)*((1-cos(d*x+c))^2*csc(d 
*x+c)^2-1)^2*(a+b*tan(d*x+c))^(1/2)*((-8*csc(d*x+c)+8*cot(d*x+c))*(-b+(a^2 
+b^2)^(1/2))^(1/2)*(a^2+b^2)^(1/2)*a^2+ln(1/(1-cos(d*x+c))*(-a*(1-cos(d*x+ 
c))^2*csc(d*x+c)+2*(a^2+b^2)^(1/2)*(1-cos(d*x+c))+2*2^(1/2)*((a*cos(d*x+c) 
+b*sin(d*x+c))*sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2 
)*sin(d*x+c)+2*b*(1-cos(d*x+c))+sin(d*x+c)*a))*a^2*(b+(a^2+b^2)^(1/2))^(1/ 
2)*(-b+(a^2+b^2)^(1/2))^(1/2)*2^(1/2)*((a*cos(d*x+c)+b*sin(d*x+c))*sin(d*x 
+c)/(cos(d*x+c)+1)^2)^(1/2)-ln(1/(1-cos(d*x+c))*(-a*(1-cos(d*x+c))^2*csc(d 
*x+c)+2*(a^2+b^2)^(1/2)*(1-cos(d*x+c))+2*2^(1/2)*((a*cos(d*x+c)+b*sin(d*x+ 
c))*sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*sin(d*x+c 
)+2*b*(1-cos(d*x+c))+sin(d*x+c)*a))*b^2*(b+(a^2+b^2)^(1/2))^(1/2)*(-b+(a^2 
+b^2)^(1/2))^(1/2)*2^(1/2)*((a*cos(d*x+c)+b*sin(d*x+c))*sin(d*x+c)/(cos(d* 
x+c)+1)^2)^(1/2)+2^(1/2)*((a*cos(d*x+c)+b*sin(d*x+c))*sin(d*x+c)/(cos(d*x+ 
c)+1)^2)^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*(-b+(a^2+b^2)^(1/2))^(1/2)*(a^2+b 
^2)^(1/2)*ln(1/(1-cos(d*x+c))*(-a*(1-cos(d*x+c))^2*csc(d*x+c)+2*(a^2+b^2)^ 
(1/2)*(1-cos(d*x+c))+2*2^(1/2)*((a*cos(d*x+c)+b*sin(d*x+c))*sin(d*x+c)/(co 
s(d*x+c)+1)^2)^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*sin(d*x+c)+2*b*(1-cos(d*x+c 
))+sin(d*x+c)*a))*b-ln(-1/(1-cos(d*x+c))*(a*(1-cos(d*x+c))^2*csc(d*x+c)+2* 
2^(1/2)*((a*cos(d*x+c)+b*sin(d*x+c))*sin(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(b 
+(a^2+b^2)^(1/2))^(1/2)*sin(d*x+c)-2*(a^2+b^2)^(1/2)*(1-cos(d*x+c))-2*b...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7665 vs. \(2 (154) = 308\).

Time = 1.26 (sec) , antiderivative size = 7665, normalized size of antiderivative = 39.51 \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {1}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}} \cot ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate(1/cot(d*x+c)**(3/2)/(a+b*tan(d*x+c))**(3/2),x)
 

Output:

Integral(1/((a + b*tan(c + d*x))**(3/2)*cot(c + d*x)**(3/2)), x)
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cot \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/((b*tan(d*x + c) + a)^(3/2)*cot(d*x + c)^(3/2)), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {1}{{\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int(1/(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))^(3/2)),x)
 

Output:

int(1/(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {a +\tan \left (d x +c \right ) b}\, \sqrt {\cot \left (d x +c \right )}}{\cot \left (d x +c \right )^{2} \tan \left (d x +c \right )^{2} b^{2}+2 \cot \left (d x +c \right )^{2} \tan \left (d x +c \right ) a b +\cot \left (d x +c \right )^{2} a^{2}}d x \] Input:

int(1/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x)
 

Output:

int((sqrt(tan(c + d*x)*b + a)*sqrt(cot(c + d*x)))/(cot(c + d*x)**2*tan(c + 
 d*x)**2*b**2 + 2*cot(c + d*x)**2*tan(c + d*x)*a*b + cot(c + d*x)**2*a**2) 
,x)