\(\int \frac {\sqrt {\cot (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx\) [876]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 252 \[ \int \frac {\sqrt {\cot (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=-\frac {\arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a-b)^{5/2} d}-\frac {\text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a+b)^{5/2} d}+\frac {2 b^2}{3 a \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} (a+b \tan (c+d x))^{3/2}}+\frac {4 b^2 \left (4 a^2+b^2\right )}{3 a^2 \left (a^2+b^2\right )^2 d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}} \] Output:

-arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^ 
(1/2)*tan(d*x+c)^(1/2)/(I*a-b)^(5/2)/d-arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1 
/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a+b)^(5/2 
)/d+2/3*b^2/a/(a^2+b^2)/d/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(3/2)+4/3*b^2* 
(4*a^2+b^2)/a^2/(a^2+b^2)^2/d/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 1.41 (sec) , antiderivative size = 255, normalized size of antiderivative = 1.01 \[ \int \frac {\sqrt {\cot (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=\frac {\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (-3 (-1)^{3/4} \left (\frac {(a+i b)^2 \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {-a+i b}}+\frac {(a-i b)^2 \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {a+i b}}\right )+\frac {2 b^2 \left (a^2+b^2\right ) \sqrt {\tan (c+d x)}}{a (a+b \tan (c+d x))^{3/2}}+\frac {4 b^2 \left (4 a^2+b^2\right ) \sqrt {\tan (c+d x)}}{a^2 \sqrt {a+b \tan (c+d x)}}\right )}{3 \left (a^2+b^2\right )^2 d} \] Input:

Integrate[Sqrt[Cot[c + d*x]]/(a + b*Tan[c + d*x])^(5/2),x]
 

Output:

(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-3*(-1)^(3/4)*(((a + I*b)^2*ArcTan 
[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]) 
/Sqrt[-a + I*b] + ((a - I*b)^2*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c 
 + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[a + I*b]) + (2*b^2*(a^2 + b^2)*S 
qrt[Tan[c + d*x]])/(a*(a + b*Tan[c + d*x])^(3/2)) + (4*b^2*(4*a^2 + b^2)*S 
qrt[Tan[c + d*x]])/(a^2*Sqrt[a + b*Tan[c + d*x]])))/(3*(a^2 + b^2)^2*d)
 

Rubi [A] (verified)

Time = 1.45 (sec) , antiderivative size = 285, normalized size of antiderivative = 1.13, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3042, 4729, 3042, 4052, 27, 3042, 4132, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cot (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\cot (c+d x)}}{(a+b \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {1}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4052

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 \int \frac {3 a^2-3 b \tan (c+d x) a+2 b^2+2 b^2 \tan ^2(c+d x)}{2 \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 a \left (a^2+b^2\right )}+\frac {2 b^2 \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {3 a^2-3 b \tan (c+d x) a+2 b^2+2 b^2 \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 a \left (a^2+b^2\right )}+\frac {2 b^2 \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {3 a^2-3 b \tan (c+d x) a+2 b^2+2 b^2 \tan (c+d x)^2}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 a \left (a^2+b^2\right )}+\frac {2 b^2 \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 4132

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {2 \int \frac {3 \left (a^2 \left (a^2-b^2\right )-2 a^3 b \tan (c+d x)\right )}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {4 b^2 \left (4 a^2+b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 a \left (a^2+b^2\right )}+\frac {2 b^2 \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {3 \int \frac {a^2 \left (a^2-b^2\right )-2 a^3 b \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {4 b^2 \left (4 a^2+b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 a \left (a^2+b^2\right )}+\frac {2 b^2 \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {3 \int \frac {a^2 \left (a^2-b^2\right )-2 a^3 b \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {4 b^2 \left (4 a^2+b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 a \left (a^2+b^2\right )}+\frac {2 b^2 \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 4099

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 b^2 \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {4 b^2 \left (4 a^2+b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {1}{2} a^2 (a-i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^2 (a+i b)^2 \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 b^2 \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {4 b^2 \left (4 a^2+b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {1}{2} a^2 (a-i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^2 (a+i b)^2 \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 4098

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 b^2 \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {4 b^2 \left (4 a^2+b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^2 (a-i b)^2 \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+\frac {a^2 (a+i b)^2 \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 104

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 b^2 \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {4 b^2 \left (4 a^2+b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^2 (a-i b)^2 \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^2 (a+i b)^2 \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 b^2 \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {4 b^2 \left (4 a^2+b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^2 (a+i b)^2 \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^2 (a-i b)^2 \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 b^2 \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {4 b^2 \left (4 a^2+b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^2 (a-i b)^2 \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {a^2 (a+i b)^2 \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}\right )\)

Input:

Int[Sqrt[Cot[c + d*x]]/(a + b*Tan[c + d*x])^(5/2),x]
 

Output:

Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((2*b^2*Sqrt[Tan[c + d*x]])/(3*a*(a^ 
2 + b^2)*d*(a + b*Tan[c + d*x])^(3/2)) + ((3*((a^2*(a - I*b)^2*ArcTan[(Sqr 
t[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a - b]*d 
) + (a^2*(a + I*b)^2*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b 
*Tan[c + d*x]]])/(Sqrt[I*a + b]*d)))/(a*(a^2 + b^2)) + (4*b^2*(4*a^2 + b^2 
)*Sqrt[Tan[c + d*x]])/(a*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]]))/(3*a*(a^ 
2 + b^2)))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4052
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c 
+ d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + Simp[1 
/((m + 1)*(a^2 + b^2)*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + 
d*Tan[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - 
 a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x], x], x] / 
; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] 
 && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || Integ 
erQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(5950\) vs. \(2(212)=424\).

Time = 5.89 (sec) , antiderivative size = 5951, normalized size of antiderivative = 23.62

method result size
default \(\text {Expression too large to display}\) \(5951\)

Input:

int(cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

result too large to display
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 11589 vs. \(2 (208) = 416\).

Time = 2.34 (sec) , antiderivative size = 11589, normalized size of antiderivative = 45.99 \[ \int \frac {\sqrt {\cot (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Too large to display} \] Input:

integrate(cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {\sqrt {\cot (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\cot {\left (c + d x \right )}}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(cot(d*x+c)**(1/2)/(a+b*tan(d*x+c))**(5/2),x)
 

Output:

Integral(sqrt(cot(c + d*x))/(a + b*tan(c + d*x))**(5/2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {\cot (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=\int { \frac {\sqrt {\cot \left (d x + c\right )}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(cot(d*x + c))/(b*tan(d*x + c) + a)^(5/2), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cot (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

Timed out
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cot (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\mathrm {cot}\left (c+d\,x\right )}}{{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{5/2}} \,d x \] Input:

int(cot(c + d*x)^(1/2)/(a + b*tan(c + d*x))^(5/2),x)
 

Output:

int(cot(c + d*x)^(1/2)/(a + b*tan(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {\cot (c+d x)}}{(a+b \tan (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {a +\tan \left (d x +c \right ) b}\, \sqrt {\cot \left (d x +c \right )}}{\tan \left (d x +c \right )^{3} b^{3}+3 \tan \left (d x +c \right )^{2} a \,b^{2}+3 \tan \left (d x +c \right ) a^{2} b +a^{3}}d x \] Input:

int(cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(5/2),x)
 

Output:

int((sqrt(tan(c + d*x)*b + a)*sqrt(cot(c + d*x)))/(tan(c + d*x)**3*b**3 + 
3*tan(c + d*x)**2*a*b**2 + 3*tan(c + d*x)*a**2*b + a**3),x)