\(\int \frac {\sqrt {c-i c \tan (e+f x)}}{(a+i a \tan (e+f x))^2} \, dx\) [960]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 138 \[ \int \frac {\sqrt {c-i c \tan (e+f x)}}{(a+i a \tan (e+f x))^2} \, dx=\frac {3 i \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-i c \tan (e+f x)}}{\sqrt {2} \sqrt {c}}\right )}{16 \sqrt {2} a^2 f}+\frac {i \sqrt {c-i c \tan (e+f x)}}{4 a^2 f (1+i \tan (e+f x))^2}+\frac {3 i \sqrt {c-i c \tan (e+f x)}}{16 a^2 f (1+i \tan (e+f x))} \] Output:

3/32*I*c^(1/2)*arctanh(1/2*(c-I*c*tan(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*2^(1/ 
2)/a^2/f+1/4*I*(c-I*c*tan(f*x+e))^(1/2)/a^2/f/(1+I*tan(f*x+e))^2+3/16*I*(c 
-I*c*tan(f*x+e))^(1/2)/a^2/f/(1+I*tan(f*x+e))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.49 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.38 \[ \int \frac {\sqrt {c-i c \tan (e+f x)}}{(a+i a \tan (e+f x))^2} \, dx=\frac {i \operatorname {Hypergeometric2F1}\left (\frac {1}{2},3,\frac {3}{2},-\frac {1}{2} i (i+\tan (e+f x))\right ) \sqrt {c-i c \tan (e+f x)}}{4 a^2 f} \] Input:

Integrate[Sqrt[c - I*c*Tan[e + f*x]]/(a + I*a*Tan[e + f*x])^2,x]
 

Output:

((I/4)*Hypergeometric2F1[1/2, 3, 3/2, (-1/2*I)*(I + Tan[e + f*x])]*Sqrt[c 
- I*c*Tan[e + f*x]])/(a^2*f)
 

Rubi [A] (warning: unable to verify)

Time = 0.42 (sec) , antiderivative size = 134, normalized size of antiderivative = 0.97, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {3042, 4005, 3042, 3968, 52, 52, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c-i c \tan (e+f x)}}{(a+i a \tan (e+f x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {c-i c \tan (e+f x)}}{(a+i a \tan (e+f x))^2}dx\)

\(\Big \downarrow \) 4005

\(\displaystyle \frac {\int \cos ^4(e+f x) (c-i c \tan (e+f x))^{5/2}dx}{a^2 c^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {(c-i c \tan (e+f x))^{5/2}}{\sec (e+f x)^4}dx}{a^2 c^2}\)

\(\Big \downarrow \) 3968

\(\displaystyle \frac {i c^3 \int \frac {1}{\sqrt {c-i c \tan (e+f x)} (i \tan (e+f x) c+c)^3}d(-i c \tan (e+f x))}{a^2 f}\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {i c^3 \left (\frac {3 \int \frac {1}{\sqrt {c-i c \tan (e+f x)} (i \tan (e+f x) c+c)^2}d(-i c \tan (e+f x))}{8 c}+\frac {\sqrt {c-i c \tan (e+f x)}}{4 c (c+i c \tan (e+f x))^2}\right )}{a^2 f}\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {i c^3 \left (\frac {3 \left (\frac {\int \frac {1}{\sqrt {c-i c \tan (e+f x)} (i \tan (e+f x) c+c)}d(-i c \tan (e+f x))}{4 c}+\frac {\sqrt {c-i c \tan (e+f x)}}{2 c (c+i c \tan (e+f x))}\right )}{8 c}+\frac {\sqrt {c-i c \tan (e+f x)}}{4 c (c+i c \tan (e+f x))^2}\right )}{a^2 f}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {i c^3 \left (\frac {3 \left (\frac {\int \frac {1}{c^2 \tan ^2(e+f x)+2 c}d\sqrt {c-i c \tan (e+f x)}}{2 c}+\frac {\sqrt {c-i c \tan (e+f x)}}{2 c (c+i c \tan (e+f x))}\right )}{8 c}+\frac {\sqrt {c-i c \tan (e+f x)}}{4 c (c+i c \tan (e+f x))^2}\right )}{a^2 f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {i c^3 \left (\frac {3 \left (\frac {\sqrt {c-i c \tan (e+f x)}}{2 c (c+i c \tan (e+f x))}-\frac {i \arctan \left (\frac {\sqrt {c} \tan (e+f x)}{\sqrt {2}}\right )}{2 \sqrt {2} c^{3/2}}\right )}{8 c}+\frac {\sqrt {c-i c \tan (e+f x)}}{4 c (c+i c \tan (e+f x))^2}\right )}{a^2 f}\)

Input:

Int[Sqrt[c - I*c*Tan[e + f*x]]/(a + I*a*Tan[e + f*x])^2,x]
 

Output:

(I*c^3*(Sqrt[c - I*c*Tan[e + f*x]]/(4*c*(c + I*c*Tan[e + f*x])^2) + (3*((( 
-1/2*I)*ArcTan[(Sqrt[c]*Tan[e + f*x])/Sqrt[2]])/(Sqrt[2]*c^(3/2)) + Sqrt[c 
 - I*c*Tan[e + f*x]]/(2*c*(c + I*c*Tan[e + f*x]))))/(8*c)))/(a^2*f)
 

Defintions of rubi rules used

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3968
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_ 
), x_Symbol] :> Simp[1/(a^(m - 2)*b*f)   Subst[Int[(a - x)^(m/2 - 1)*(a + x 
)^(n + m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x] && 
 EqQ[a^2 + b^2, 0] && IntegerQ[m/2]
 

rule 4005
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a^m*c^m   Int[Sec[e + f*x]^(2*m)*(c + 
 d*Tan[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[ 
b*c + a*d, 0] && EqQ[a^2 + b^2, 0] && IntegerQ[m] &&  !(IGtQ[n, 0] && (LtQ[ 
m, 0] || GtQ[m, n]))
 
Maple [A] (verified)

Time = 0.32 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.85

method result size
derivativedivides \(\frac {2 i c^{3} \left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}}{8 c \left (c +i c \tan \left (f x +e \right )\right )^{2}}+\frac {\frac {3 \sqrt {c -i c \tan \left (f x +e \right )}}{32 c \left (c +i c \tan \left (f x +e \right )\right )}+\frac {3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right )}{64 c^{\frac {3}{2}}}}{c}\right )}{f \,a^{2}}\) \(117\)
default \(\frac {2 i c^{3} \left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}}{8 c \left (c +i c \tan \left (f x +e \right )\right )^{2}}+\frac {\frac {3 \sqrt {c -i c \tan \left (f x +e \right )}}{32 c \left (c +i c \tan \left (f x +e \right )\right )}+\frac {3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right )}{64 c^{\frac {3}{2}}}}{c}\right )}{f \,a^{2}}\) \(117\)

Input:

int((c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^2,x,method=_RETURNVERBOSE)
 

Output:

2*I/f/a^2*c^3*(1/8*(c-I*c*tan(f*x+e))^(1/2)/c/(c+I*c*tan(f*x+e))^2+3/8/c*( 
1/4*(c-I*c*tan(f*x+e))^(1/2)/c/(c+I*c*tan(f*x+e))+1/8/c^(3/2)*2^(1/2)*arct 
anh(1/2*(c-I*c*tan(f*x+e))^(1/2)*2^(1/2)/c^(1/2))))
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 275 vs. \(2 (103) = 206\).

Time = 0.08 (sec) , antiderivative size = 275, normalized size of antiderivative = 1.99 \[ \int \frac {\sqrt {c-i c \tan (e+f x)}}{(a+i a \tan (e+f x))^2} \, dx=\frac {{\left (3 \, \sqrt {\frac {1}{2}} a^{2} f \sqrt {-\frac {c}{a^{4} f^{2}}} e^{\left (4 i \, f x + 4 i \, e\right )} \log \left (\frac {3 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + a^{2} f\right )} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {-\frac {c}{a^{4} f^{2}}} + i \, c\right )} e^{\left (-i \, f x - i \, e\right )}}{8 \, a^{2} f}\right ) - 3 \, \sqrt {\frac {1}{2}} a^{2} f \sqrt {-\frac {c}{a^{4} f^{2}}} e^{\left (4 i \, f x + 4 i \, e\right )} \log \left (-\frac {3 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} + a^{2} f\right )} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {-\frac {c}{a^{4} f^{2}}} - i \, c\right )} e^{\left (-i \, f x - i \, e\right )}}{8 \, a^{2} f}\right ) + \sqrt {2} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} {\left (5 i \, e^{\left (4 i \, f x + 4 i \, e\right )} + 7 i \, e^{\left (2 i \, f x + 2 i \, e\right )} + 2 i\right )}\right )} e^{\left (-4 i \, f x - 4 i \, e\right )}}{32 \, a^{2} f} \] Input:

integrate((c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^2,x, algorithm="fric 
as")
 

Output:

1/32*(3*sqrt(1/2)*a^2*f*sqrt(-c/(a^4*f^2))*e^(4*I*f*x + 4*I*e)*log(3/8*(sq 
rt(2)*sqrt(1/2)*(a^2*f*e^(2*I*f*x + 2*I*e) + a^2*f)*sqrt(c/(e^(2*I*f*x + 2 
*I*e) + 1))*sqrt(-c/(a^4*f^2)) + I*c)*e^(-I*f*x - I*e)/(a^2*f)) - 3*sqrt(1 
/2)*a^2*f*sqrt(-c/(a^4*f^2))*e^(4*I*f*x + 4*I*e)*log(-3/8*(sqrt(2)*sqrt(1/ 
2)*(a^2*f*e^(2*I*f*x + 2*I*e) + a^2*f)*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*s 
qrt(-c/(a^4*f^2)) - I*c)*e^(-I*f*x - I*e)/(a^2*f)) + sqrt(2)*sqrt(c/(e^(2* 
I*f*x + 2*I*e) + 1))*(5*I*e^(4*I*f*x + 4*I*e) + 7*I*e^(2*I*f*x + 2*I*e) + 
2*I))*e^(-4*I*f*x - 4*I*e)/(a^2*f)
 

Sympy [F]

\[ \int \frac {\sqrt {c-i c \tan (e+f x)}}{(a+i a \tan (e+f x))^2} \, dx=- \frac {\int \frac {\sqrt {- i c \tan {\left (e + f x \right )} + c}}{\tan ^{2}{\left (e + f x \right )} - 2 i \tan {\left (e + f x \right )} - 1}\, dx}{a^{2}} \] Input:

integrate((c-I*c*tan(f*x+e))**(1/2)/(a+I*a*tan(f*x+e))**2,x)
 

Output:

-Integral(sqrt(-I*c*tan(e + f*x) + c)/(tan(e + f*x)**2 - 2*I*tan(e + f*x) 
- 1), x)/a**2
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.11 \[ \int \frac {\sqrt {c-i c \tan (e+f x)}}{(a+i a \tan (e+f x))^2} \, dx=-\frac {i \, {\left (\frac {3 \, \sqrt {2} c^{\frac {3}{2}} \log \left (-\frac {\sqrt {2} \sqrt {c} - \sqrt {-i \, c \tan \left (f x + e\right ) + c}}{\sqrt {2} \sqrt {c} + \sqrt {-i \, c \tan \left (f x + e\right ) + c}}\right )}{a^{2}} + \frac {4 \, {\left (3 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {3}{2}} c^{2} - 10 \, \sqrt {-i \, c \tan \left (f x + e\right ) + c} c^{3}\right )}}{{\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{2} a^{2} - 4 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )} a^{2} c + 4 \, a^{2} c^{2}}\right )}}{64 \, c f} \] Input:

integrate((c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^2,x, algorithm="maxi 
ma")
 

Output:

-1/64*I*(3*sqrt(2)*c^(3/2)*log(-(sqrt(2)*sqrt(c) - sqrt(-I*c*tan(f*x + e) 
+ c))/(sqrt(2)*sqrt(c) + sqrt(-I*c*tan(f*x + e) + c)))/a^2 + 4*(3*(-I*c*ta 
n(f*x + e) + c)^(3/2)*c^2 - 10*sqrt(-I*c*tan(f*x + e) + c)*c^3)/((-I*c*tan 
(f*x + e) + c)^2*a^2 - 4*(-I*c*tan(f*x + e) + c)*a^2*c + 4*a^2*c^2))/(c*f)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {c-i c \tan (e+f x)}}{(a+i a \tan (e+f x))^2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^2,x, algorithm="giac 
")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [B] (verification not implemented)

Time = 2.01 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.96 \[ \int \frac {\sqrt {c-i c \tan (e+f x)}}{(a+i a \tan (e+f x))^2} \, dx=\frac {\frac {c^2\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}\,5{}\mathrm {i}}{8\,a^2\,f}-\frac {c\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{3/2}\,3{}\mathrm {i}}{16\,a^2\,f}}{{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^2-4\,c\,\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )+4\,c^2}+\frac {\sqrt {2}\,\sqrt {-c}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {-c}}\right )\,3{}\mathrm {i}}{32\,a^2\,f} \] Input:

int((c - c*tan(e + f*x)*1i)^(1/2)/(a + a*tan(e + f*x)*1i)^2,x)
 

Output:

((c^2*(c - c*tan(e + f*x)*1i)^(1/2)*5i)/(8*a^2*f) - (c*(c - c*tan(e + f*x) 
*1i)^(3/2)*3i)/(16*a^2*f))/((c - c*tan(e + f*x)*1i)^2 - 4*c*(c - c*tan(e + 
 f*x)*1i) + 4*c^2) + (2^(1/2)*(-c)^(1/2)*atan((2^(1/2)*(c - c*tan(e + f*x) 
*1i)^(1/2))/(2*(-c)^(1/2)))*3i)/(32*a^2*f)
 

Reduce [F]

\[ \int \frac {\sqrt {c-i c \tan (e+f x)}}{(a+i a \tan (e+f x))^2} \, dx=-\frac {\sqrt {c}\, \left (\int \frac {\sqrt {-\tan \left (f x +e \right ) i +1}}{\tan \left (f x +e \right )^{2}-2 \tan \left (f x +e \right ) i -1}d x \right )}{a^{2}} \] Input:

int((c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^2,x)
 

Output:

( - sqrt(c)*int(sqrt( - tan(e + f*x)*i + 1)/(tan(e + f*x)**2 - 2*tan(e + f 
*x)*i - 1),x))/a**2