\(\int \frac {(c-i c \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx\) [967]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 197 \[ \int \frac {(c-i c \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=-\frac {i c^{3/2} \text {arctanh}\left (\frac {\sqrt {c-i c \tan (e+f x)}}{\sqrt {2} \sqrt {c}}\right )}{32 \sqrt {2} a^3 f}+\frac {i c^4 \sqrt {c-i c \tan (e+f x)}}{3 a^3 f (c+i c \tan (e+f x))^3}-\frac {i c^3 \sqrt {c-i c \tan (e+f x)}}{24 a^3 f (c+i c \tan (e+f x))^2}-\frac {i c^4 \sqrt {c-i c \tan (e+f x)}}{32 a^3 f \left (c^3+i c^3 \tan (e+f x)\right )} \] Output:

-1/64*I*c^(3/2)*arctanh(1/2*(c-I*c*tan(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*2^(1 
/2)/a^3/f+1/3*I*c^4*(c-I*c*tan(f*x+e))^(1/2)/a^3/f/(c+I*c*tan(f*x+e))^3-1/ 
24*I*c^3*(c-I*c*tan(f*x+e))^(1/2)/a^3/f/(c+I*c*tan(f*x+e))^2-1/32*I*c^4*(c 
-I*c*tan(f*x+e))^(1/2)/a^3/f/(c^3+I*c^3*tan(f*x+e))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.68 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.27 \[ \int \frac {(c-i c \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=\frac {i \operatorname {Hypergeometric2F1}\left (\frac {3}{2},4,\frac {5}{2},-\frac {1}{2} i (i+\tan (e+f x))\right ) (c-i c \tan (e+f x))^{3/2}}{24 a^3 f} \] Input:

Integrate[(c - I*c*Tan[e + f*x])^(3/2)/(a + I*a*Tan[e + f*x])^3,x]
 

Output:

((I/24)*Hypergeometric2F1[3/2, 4, 5/2, (-1/2*I)*(I + Tan[e + f*x])]*(c - I 
*c*Tan[e + f*x])^(3/2))/(a^3*f)
 

Rubi [A] (warning: unable to verify)

Time = 0.46 (sec) , antiderivative size = 175, normalized size of antiderivative = 0.89, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {3042, 4005, 3042, 3968, 51, 52, 52, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c-i c \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(c-i c \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3}dx\)

\(\Big \downarrow \) 4005

\(\displaystyle \frac {\int \cos ^6(e+f x) (c-i c \tan (e+f x))^{9/2}dx}{a^3 c^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {(c-i c \tan (e+f x))^{9/2}}{\sec (e+f x)^6}dx}{a^3 c^3}\)

\(\Big \downarrow \) 3968

\(\displaystyle \frac {i c^4 \int \frac {\sqrt {c-i c \tan (e+f x)}}{(i \tan (e+f x) c+c)^4}d(-i c \tan (e+f x))}{a^3 f}\)

\(\Big \downarrow \) 51

\(\displaystyle \frac {i c^4 \left (\frac {\sqrt {c-i c \tan (e+f x)}}{3 (c+i c \tan (e+f x))^3}-\frac {1}{6} \int \frac {1}{\sqrt {c-i c \tan (e+f x)} (i \tan (e+f x) c+c)^3}d(-i c \tan (e+f x))\right )}{a^3 f}\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {i c^4 \left (\frac {1}{6} \left (-\frac {3 \int \frac {1}{\sqrt {c-i c \tan (e+f x)} (i \tan (e+f x) c+c)^2}d(-i c \tan (e+f x))}{8 c}-\frac {\sqrt {c-i c \tan (e+f x)}}{4 c (c+i c \tan (e+f x))^2}\right )+\frac {\sqrt {c-i c \tan (e+f x)}}{3 (c+i c \tan (e+f x))^3}\right )}{a^3 f}\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {i c^4 \left (\frac {1}{6} \left (-\frac {3 \left (\frac {\int \frac {1}{\sqrt {c-i c \tan (e+f x)} (i \tan (e+f x) c+c)}d(-i c \tan (e+f x))}{4 c}+\frac {\sqrt {c-i c \tan (e+f x)}}{2 c (c+i c \tan (e+f x))}\right )}{8 c}-\frac {\sqrt {c-i c \tan (e+f x)}}{4 c (c+i c \tan (e+f x))^2}\right )+\frac {\sqrt {c-i c \tan (e+f x)}}{3 (c+i c \tan (e+f x))^3}\right )}{a^3 f}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {i c^4 \left (\frac {1}{6} \left (-\frac {3 \left (\frac {\int \frac {1}{c^2 \tan ^2(e+f x)+2 c}d\sqrt {c-i c \tan (e+f x)}}{2 c}+\frac {\sqrt {c-i c \tan (e+f x)}}{2 c (c+i c \tan (e+f x))}\right )}{8 c}-\frac {\sqrt {c-i c \tan (e+f x)}}{4 c (c+i c \tan (e+f x))^2}\right )+\frac {\sqrt {c-i c \tan (e+f x)}}{3 (c+i c \tan (e+f x))^3}\right )}{a^3 f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {i c^4 \left (\frac {1}{6} \left (-\frac {3 \left (\frac {\sqrt {c-i c \tan (e+f x)}}{2 c (c+i c \tan (e+f x))}-\frac {i \arctan \left (\frac {\sqrt {c} \tan (e+f x)}{\sqrt {2}}\right )}{2 \sqrt {2} c^{3/2}}\right )}{8 c}-\frac {\sqrt {c-i c \tan (e+f x)}}{4 c (c+i c \tan (e+f x))^2}\right )+\frac {\sqrt {c-i c \tan (e+f x)}}{3 (c+i c \tan (e+f x))^3}\right )}{a^3 f}\)

Input:

Int[(c - I*c*Tan[e + f*x])^(3/2)/(a + I*a*Tan[e + f*x])^3,x]
 

Output:

(I*c^4*(Sqrt[c - I*c*Tan[e + f*x]]/(3*(c + I*c*Tan[e + f*x])^3) + (-1/4*Sq 
rt[c - I*c*Tan[e + f*x]]/(c*(c + I*c*Tan[e + f*x])^2) - (3*(((-1/2*I)*ArcT 
an[(Sqrt[c]*Tan[e + f*x])/Sqrt[2]])/(Sqrt[2]*c^(3/2)) + Sqrt[c - I*c*Tan[e 
 + f*x]]/(2*c*(c + I*c*Tan[e + f*x]))))/(8*c))/6))/(a^3*f)
 

Defintions of rubi rules used

rule 51
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && ILtQ[m, -1] && FractionQ[n] && GtQ[n, 0]
 

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3968
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_ 
), x_Symbol] :> Simp[1/(a^(m - 2)*b*f)   Subst[Int[(a - x)^(m/2 - 1)*(a + x 
)^(n + m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x] && 
 EqQ[a^2 + b^2, 0] && IntegerQ[m/2]
 

rule 4005
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a^m*c^m   Int[Sec[e + f*x]^(2*m)*(c + 
 d*Tan[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[ 
b*c + a*d, 0] && EqQ[a^2 + b^2, 0] && IntegerQ[m] &&  !(IGtQ[n, 0] && (LtQ[ 
m, 0] || GtQ[m, n]))
 
Maple [A] (verified)

Time = 0.35 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.59

method result size
derivativedivides \(\frac {2 i c^{4} \left (\frac {-\frac {\left (c -i c \tan \left (f x +e \right )\right )^{\frac {5}{2}}}{64 c^{2}}+\frac {\left (c -i c \tan \left (f x +e \right )\right )^{\frac {3}{2}}}{12 c}+\frac {\sqrt {c -i c \tan \left (f x +e \right )}}{16}}{\left (c +i c \tan \left (f x +e \right )\right )^{3}}-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right )}{128 c^{\frac {5}{2}}}\right )}{f \,a^{3}}\) \(116\)
default \(\frac {2 i c^{4} \left (\frac {-\frac {\left (c -i c \tan \left (f x +e \right )\right )^{\frac {5}{2}}}{64 c^{2}}+\frac {\left (c -i c \tan \left (f x +e \right )\right )^{\frac {3}{2}}}{12 c}+\frac {\sqrt {c -i c \tan \left (f x +e \right )}}{16}}{\left (c +i c \tan \left (f x +e \right )\right )^{3}}-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right )}{128 c^{\frac {5}{2}}}\right )}{f \,a^{3}}\) \(116\)

Input:

int((c-I*c*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^3,x,method=_RETURNVERBOSE)
 

Output:

2*I/f/a^3*c^4*(8*(-1/512/c^2*(c-I*c*tan(f*x+e))^(5/2)+1/96/c*(c-I*c*tan(f* 
x+e))^(3/2)+1/128*(c-I*c*tan(f*x+e))^(1/2))/(c+I*c*tan(f*x+e))^3-1/128/c^( 
5/2)*2^(1/2)*arctanh(1/2*(c-I*c*tan(f*x+e))^(1/2)*2^(1/2)/c^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 304, normalized size of antiderivative = 1.54 \[ \int \frac {(c-i c \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=-\frac {{\left (3 \, \sqrt {\frac {1}{2}} a^{3} f \sqrt {-\frac {c^{3}}{a^{6} f^{2}}} e^{\left (6 i \, f x + 6 i \, e\right )} \log \left (-\frac {{\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{3} f e^{\left (2 i \, f x + 2 i \, e\right )} + a^{3} f\right )} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {-\frac {c^{3}}{a^{6} f^{2}}} + i \, c^{2}\right )} e^{\left (-i \, f x - i \, e\right )}}{16 \, a^{3} f}\right ) - 3 \, \sqrt {\frac {1}{2}} a^{3} f \sqrt {-\frac {c^{3}}{a^{6} f^{2}}} e^{\left (6 i \, f x + 6 i \, e\right )} \log \left (\frac {{\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{3} f e^{\left (2 i \, f x + 2 i \, e\right )} + a^{3} f\right )} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {-\frac {c^{3}}{a^{6} f^{2}}} - i \, c^{2}\right )} e^{\left (-i \, f x - i \, e\right )}}{16 \, a^{3} f}\right ) - \sqrt {2} {\left (3 i \, c e^{\left (6 i \, f x + 6 i \, e\right )} + 17 i \, c e^{\left (4 i \, f x + 4 i \, e\right )} + 22 i \, c e^{\left (2 i \, f x + 2 i \, e\right )} + 8 i \, c\right )} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-6 i \, f x - 6 i \, e\right )}}{192 \, a^{3} f} \] Input:

integrate((c-I*c*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^3,x, algorithm="fric 
as")
 

Output:

-1/192*(3*sqrt(1/2)*a^3*f*sqrt(-c^3/(a^6*f^2))*e^(6*I*f*x + 6*I*e)*log(-1/ 
16*(sqrt(2)*sqrt(1/2)*(a^3*f*e^(2*I*f*x + 2*I*e) + a^3*f)*sqrt(c/(e^(2*I*f 
*x + 2*I*e) + 1))*sqrt(-c^3/(a^6*f^2)) + I*c^2)*e^(-I*f*x - I*e)/(a^3*f)) 
- 3*sqrt(1/2)*a^3*f*sqrt(-c^3/(a^6*f^2))*e^(6*I*f*x + 6*I*e)*log(1/16*(sqr 
t(2)*sqrt(1/2)*(a^3*f*e^(2*I*f*x + 2*I*e) + a^3*f)*sqrt(c/(e^(2*I*f*x + 2* 
I*e) + 1))*sqrt(-c^3/(a^6*f^2)) - I*c^2)*e^(-I*f*x - I*e)/(a^3*f)) - sqrt( 
2)*(3*I*c*e^(6*I*f*x + 6*I*e) + 17*I*c*e^(4*I*f*x + 4*I*e) + 22*I*c*e^(2*I 
*f*x + 2*I*e) + 8*I*c)*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)))*e^(-6*I*f*x - 6* 
I*e)/(a^3*f)
 

Sympy [F]

\[ \int \frac {(c-i c \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=\frac {i \left (\int \frac {c \sqrt {- i c \tan {\left (e + f x \right )} + c}}{\tan ^{3}{\left (e + f x \right )} - 3 i \tan ^{2}{\left (e + f x \right )} - 3 \tan {\left (e + f x \right )} + i}\, dx + \int \left (- \frac {i c \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan {\left (e + f x \right )}}{\tan ^{3}{\left (e + f x \right )} - 3 i \tan ^{2}{\left (e + f x \right )} - 3 \tan {\left (e + f x \right )} + i}\right )\, dx\right )}{a^{3}} \] Input:

integrate((c-I*c*tan(f*x+e))**(3/2)/(a+I*a*tan(f*x+e))**3,x)
 

Output:

I*(Integral(c*sqrt(-I*c*tan(e + f*x) + c)/(tan(e + f*x)**3 - 3*I*tan(e + f 
*x)**2 - 3*tan(e + f*x) + I), x) + Integral(-I*c*sqrt(-I*c*tan(e + f*x) + 
c)*tan(e + f*x)/(tan(e + f*x)**3 - 3*I*tan(e + f*x)**2 - 3*tan(e + f*x) + 
I), x))/a**3
 

Maxima [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.97 \[ \int \frac {(c-i c \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=\frac {i \, {\left (\frac {3 \, \sqrt {2} c^{\frac {5}{2}} \log \left (-\frac {\sqrt {2} \sqrt {c} - \sqrt {-i \, c \tan \left (f x + e\right ) + c}}{\sqrt {2} \sqrt {c} + \sqrt {-i \, c \tan \left (f x + e\right ) + c}}\right )}{a^{3}} + \frac {4 \, {\left (3 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {5}{2}} c^{3} - 16 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {3}{2}} c^{4} - 12 \, \sqrt {-i \, c \tan \left (f x + e\right ) + c} c^{5}\right )}}{{\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{3} a^{3} - 6 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{2} a^{3} c + 12 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )} a^{3} c^{2} - 8 \, a^{3} c^{3}}\right )}}{384 \, c f} \] Input:

integrate((c-I*c*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^3,x, algorithm="maxi 
ma")
 

Output:

1/384*I*(3*sqrt(2)*c^(5/2)*log(-(sqrt(2)*sqrt(c) - sqrt(-I*c*tan(f*x + e) 
+ c))/(sqrt(2)*sqrt(c) + sqrt(-I*c*tan(f*x + e) + c)))/a^3 + 4*(3*(-I*c*ta 
n(f*x + e) + c)^(5/2)*c^3 - 16*(-I*c*tan(f*x + e) + c)^(3/2)*c^4 - 12*sqrt 
(-I*c*tan(f*x + e) + c)*c^5)/((-I*c*tan(f*x + e) + c)^3*a^3 - 6*(-I*c*tan( 
f*x + e) + c)^2*a^3*c + 12*(-I*c*tan(f*x + e) + c)*a^3*c^2 - 8*a^3*c^3))/( 
c*f)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(c-i c \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((c-I*c*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^3,x, algorithm="giac 
")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [B] (verification not implemented)

Time = 2.10 (sec) , antiderivative size = 181, normalized size of antiderivative = 0.92 \[ \int \frac {(c-i c \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=\frac {\frac {c^4\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}\,1{}\mathrm {i}}{8\,a^3\,f}+\frac {c^3\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{3/2}\,1{}\mathrm {i}}{6\,a^3\,f}-\frac {c^2\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{5/2}\,1{}\mathrm {i}}{32\,a^3\,f}}{6\,c\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^2-12\,c^2\,\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )-{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^3+8\,c^3}+\frac {\sqrt {2}\,{\left (-c\right )}^{3/2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {-c}}\right )\,1{}\mathrm {i}}{64\,a^3\,f} \] Input:

int((c - c*tan(e + f*x)*1i)^(3/2)/(a + a*tan(e + f*x)*1i)^3,x)
 

Output:

((c^4*(c - c*tan(e + f*x)*1i)^(1/2)*1i)/(8*a^3*f) + (c^3*(c - c*tan(e + f* 
x)*1i)^(3/2)*1i)/(6*a^3*f) - (c^2*(c - c*tan(e + f*x)*1i)^(5/2)*1i)/(32*a^ 
3*f))/(6*c*(c - c*tan(e + f*x)*1i)^2 - 12*c^2*(c - c*tan(e + f*x)*1i) - (c 
 - c*tan(e + f*x)*1i)^3 + 8*c^3) + (2^(1/2)*(-c)^(3/2)*atan((2^(1/2)*(c - 
c*tan(e + f*x)*1i)^(1/2))/(2*(-c)^(1/2)))*1i)/(64*a^3*f)
 

Reduce [F]

\[ \int \frac {(c-i c \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=\frac {\sqrt {c}\, c \left (2 \sqrt {-\tan \left (f x +e \right ) i +1}\, i +\left (\int \frac {\sqrt {-\tan \left (f x +e \right ) i +1}\, \tan \left (f x +e \right )^{4}}{\tan \left (f x +e \right )^{3} i +3 \tan \left (f x +e \right )^{2}-3 \tan \left (f x +e \right ) i -1}d x \right ) f -4 \left (\int \frac {\sqrt {-\tan \left (f x +e \right ) i +1}\, \tan \left (f x +e \right )^{3}}{\tan \left (f x +e \right )^{3} i +3 \tan \left (f x +e \right )^{2}-3 \tan \left (f x +e \right ) i -1}d x \right ) f i -6 \left (\int \frac {\sqrt {-\tan \left (f x +e \right ) i +1}\, \tan \left (f x +e \right )^{2}}{\tan \left (f x +e \right )^{3} i +3 \tan \left (f x +e \right )^{2}-3 \tan \left (f x +e \right ) i -1}d x \right ) f +5 \left (\int \frac {\sqrt {-\tan \left (f x +e \right ) i +1}\, \tan \left (f x +e \right )}{\tan \left (f x +e \right )^{3} i +3 \tan \left (f x +e \right )^{2}-3 \tan \left (f x +e \right ) i -1}d x \right ) f i \right )}{a^{3} f} \] Input:

int((c-I*c*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^3,x)
 

Output:

(sqrt(c)*c*(2*sqrt( - tan(e + f*x)*i + 1)*i + int((sqrt( - tan(e + f*x)*i 
+ 1)*tan(e + f*x)**4)/(tan(e + f*x)**3*i + 3*tan(e + f*x)**2 - 3*tan(e + f 
*x)*i - 1),x)*f - 4*int((sqrt( - tan(e + f*x)*i + 1)*tan(e + f*x)**3)/(tan 
(e + f*x)**3*i + 3*tan(e + f*x)**2 - 3*tan(e + f*x)*i - 1),x)*f*i - 6*int( 
(sqrt( - tan(e + f*x)*i + 1)*tan(e + f*x)**2)/(tan(e + f*x)**3*i + 3*tan(e 
 + f*x)**2 - 3*tan(e + f*x)*i - 1),x)*f + 5*int((sqrt( - tan(e + f*x)*i + 
1)*tan(e + f*x))/(tan(e + f*x)**3*i + 3*tan(e + f*x)**2 - 3*tan(e + f*x)*i 
 - 1),x)*f*i))/(a**3*f)