\(\int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx\) [114]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 34, antiderivative size = 80 \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx=\frac {2 \sqrt [4]{-1} a (i A+B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )}{d}+\frac {2 a (i A+B) \sqrt {\tan (c+d x)}}{d}+\frac {2 i a B \tan ^{\frac {3}{2}}(c+d x)}{3 d} \] Output:

2*(-1)^(1/4)*a*(I*A+B)*arctan((-1)^(3/4)*tan(d*x+c)^(1/2))/d+2*a*(I*A+B)*t 
an(d*x+c)^(1/2)/d+2/3*I*a*B*tan(d*x+c)^(3/2)/d
 

Mathematica [A] (verified)

Time = 0.34 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.89 \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx=\frac {2 a \left (3 \sqrt [4]{-1} (i A+B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )+\sqrt {\tan (c+d x)} (3 i A+3 B+i B \tan (c+d x))\right )}{3 d} \] Input:

Integrate[Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]),x 
]
 

Output:

(2*a*(3*(-1)^(1/4)*(I*A + B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] + Sqrt[ 
Tan[c + d*x]]*((3*I)*A + 3*B + I*B*Tan[c + d*x])))/(3*d)
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.206, Rules used = {3042, 4075, 3042, 4011, 3042, 4016, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x)) (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 4075

\(\displaystyle \int \sqrt {\tan (c+d x)} (a (A-i B)+a (i A+B) \tan (c+d x))dx+\frac {2 i a B \tan ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\tan (c+d x)} (a (A-i B)+a (i A+B) \tan (c+d x))dx+\frac {2 i a B \tan ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 4011

\(\displaystyle \int \frac {a (A-i B) \tan (c+d x)-a (i A+B)}{\sqrt {\tan (c+d x)}}dx+\frac {2 a (B+i A) \sqrt {\tan (c+d x)}}{d}+\frac {2 i a B \tan ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a (A-i B) \tan (c+d x)-a (i A+B)}{\sqrt {\tan (c+d x)}}dx+\frac {2 a (B+i A) \sqrt {\tan (c+d x)}}{d}+\frac {2 i a B \tan ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 4016

\(\displaystyle \frac {2 a^2 (B+i A)^2 \int \frac {1}{-a (i A+B)-a (A-i B) \tan (c+d x)}d\sqrt {\tan (c+d x)}}{d}+\frac {2 a (B+i A) \sqrt {\tan (c+d x)}}{d}+\frac {2 i a B \tan ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 \sqrt [4]{-1} a (B+i A) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )}{d}+\frac {2 a (B+i A) \sqrt {\tan (c+d x)}}{d}+\frac {2 i a B \tan ^{\frac {3}{2}}(c+d x)}{3 d}\)

Input:

Int[Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]
 

Output:

(2*(-1)^(1/4)*a*(I*A + B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]])/d + (2*a* 
(I*A + B)*Sqrt[Tan[c + d*x]])/d + (((2*I)/3)*a*B*Tan[c + d*x]^(3/2))/d
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4011
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Int 
[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 
 0] && GtQ[m, 0]
 

rule 4016
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2*(c^2/f)   Subst[Int[1/(b*c - d*x^2), x], x, Sqrt[b 
*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]
 

rule 4075
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B 
*d*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f* 
x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ[m, -1]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 225 vs. \(2 (65 ) = 130\).

Time = 0.08 (sec) , antiderivative size = 226, normalized size of antiderivative = 2.82

method result size
derivativedivides \(\frac {a \left (\frac {2 i B \tan \left (d x +c \right )^{\frac {3}{2}}}{3}+2 i A \sqrt {\tan \left (d x +c \right )}+2 B \sqrt {\tan \left (d x +c \right )}+\frac {\left (-i A -B \right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}+\frac {\left (-i B +A \right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}\) \(226\)
default \(\frac {a \left (\frac {2 i B \tan \left (d x +c \right )^{\frac {3}{2}}}{3}+2 i A \sqrt {\tan \left (d x +c \right )}+2 B \sqrt {\tan \left (d x +c \right )}+\frac {\left (-i A -B \right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}+\frac {\left (-i B +A \right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}\) \(226\)
parts \(\frac {\left (i a A +B a \right ) \left (2 \sqrt {\tan \left (d x +c \right )}-\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}+\frac {a A \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4 d}+\frac {i a B \left (\frac {2 \tan \left (d x +c \right )^{\frac {3}{2}}}{3}-\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}\) \(305\)

Input:

int(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x,method=_RETURNV 
ERBOSE)
 

Output:

1/d*a*(2/3*I*B*tan(d*x+c)^(3/2)+2*I*A*tan(d*x+c)^(1/2)+2*B*tan(d*x+c)^(1/2 
)+1/4*(-I*A-B)*2^(1/2)*(ln((tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1/2)+1)/(tan(d* 
x+c)-2^(1/2)*tan(d*x+c)^(1/2)+1))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*a 
rctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))+1/4*(A-I*B)*2^(1/2)*(ln((tan(d*x+c)-2^ 
(1/2)*tan(d*x+c)^(1/2)+1)/(tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1/2)+1))+2*arcta 
n(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))))
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 372 vs. \(2 (62) = 124\).

Time = 0.10 (sec) , antiderivative size = 372, normalized size of antiderivative = 4.65 \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx=-\frac {3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{2}}{d^{2}}} \log \left (\frac {2 \, {\left ({\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) - 3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{2}}{d^{2}}} \log \left (\frac {2 \, {\left ({\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} - {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) + 4 \, {\left ({\left (-3 i \, A - 4 \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (-3 i \, A - 2 \, B\right )} a\right )} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{6 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \] Input:

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorith 
m="fricas")
 

Output:

-1/6*(3*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^2/d^2 
)*log(2*((A - I*B)*a*e^(2*I*d*x + 2*I*c) + (d*e^(2*I*d*x + 2*I*c) + d)*sqr 
t(-(-I*A^2 - 2*A*B + I*B^2)*a^2/d^2)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^ 
(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)/((I*A + B)*a)) - 3*(d*e^(2*I 
*d*x + 2*I*c) + d)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^2/d^2)*log(2*((A - I*B 
)*a*e^(2*I*d*x + 2*I*c) - (d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-(-I*A^2 - 2*A* 
B + I*B^2)*a^2/d^2)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) 
 + 1)))*e^(-2*I*d*x - 2*I*c)/((I*A + B)*a)) + 4*((-3*I*A - 4*B)*a*e^(2*I*d 
*x + 2*I*c) + (-3*I*A - 2*B)*a)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I* 
d*x + 2*I*c) + 1)))/(d*e^(2*I*d*x + 2*I*c) + d)
 

Sympy [F]

\[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx=i a \left (\int A \tan ^{\frac {3}{2}}{\left (c + d x \right )}\, dx + \int B \tan ^{\frac {5}{2}}{\left (c + d x \right )}\, dx + \int \left (- i A \sqrt {\tan {\left (c + d x \right )}}\right )\, dx + \int \left (- i B \tan ^{\frac {3}{2}}{\left (c + d x \right )}\right )\, dx\right ) \] Input:

integrate(tan(d*x+c)**(1/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x)
 

Output:

I*a*(Integral(A*tan(c + d*x)**(3/2), x) + Integral(B*tan(c + d*x)**(5/2), 
x) + Integral(-I*A*sqrt(tan(c + d*x)), x) + Integral(-I*B*tan(c + d*x)**(3 
/2), x))
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 170 vs. \(2 (62) = 124\).

Time = 0.15 (sec) , antiderivative size = 170, normalized size of antiderivative = 2.12 \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx=-\frac {-8 i \, B a \tan \left (d x + c\right )^{\frac {3}{2}} + 24 \, {\left (-i \, A - B\right )} a \sqrt {\tan \left (d x + c\right )} + 3 \, {\left (2 \, \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )\right )} a}{12 \, d} \] Input:

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorith 
m="maxima")
 

Output:

-1/12*(-8*I*B*a*tan(d*x + c)^(3/2) + 24*(-I*A - B)*a*sqrt(tan(d*x + c)) + 
3*(2*sqrt(2)*((I - 1)*A + (I + 1)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt( 
tan(d*x + c)))) + 2*sqrt(2)*((I - 1)*A + (I + 1)*B)*arctan(-1/2*sqrt(2)*(s 
qrt(2) - 2*sqrt(tan(d*x + c)))) - sqrt(2)*(-(I + 1)*A + (I - 1)*B)*log(sqr 
t(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + sqrt(2)*(-(I + 1)*A + (I - 1 
)*B)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1))*a)/d
 

Giac [A] (verification not implemented)

Time = 0.41 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.88 \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx=-\frac {-2 i \, B a \tan \left (d x + c\right )^{\frac {3}{2}} + 3 \, \sqrt {2} {\left (\left (i - 1\right ) \, A a + \left (i + 1\right ) \, B a\right )} \arctan \left (-\left (\frac {1}{2} i - \frac {1}{2}\right ) \, \sqrt {2} \sqrt {\tan \left (d x + c\right )}\right ) - 6 i \, A a \sqrt {\tan \left (d x + c\right )} - 6 \, B a \sqrt {\tan \left (d x + c\right )}}{3 \, d} \] Input:

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorith 
m="giac")
 

Output:

-1/3*(-2*I*B*a*tan(d*x + c)^(3/2) + 3*sqrt(2)*((I - 1)*A*a + (I + 1)*B*a)* 
arctan(-(1/2*I - 1/2)*sqrt(2)*sqrt(tan(d*x + c))) - 6*I*A*a*sqrt(tan(d*x + 
 c)) - 6*B*a*sqrt(tan(d*x + c)))/d
 

Mupad [B] (verification not implemented)

Time = 4.86 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.24 \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx=\frac {A\,a\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,2{}\mathrm {i}}{d}+\frac {2\,B\,a\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{d}+\frac {B\,a\,{\mathrm {tan}\left (c+d\,x\right )}^{3/2}\,2{}\mathrm {i}}{3\,d}-\frac {2\,{\left (-1\right )}^{1/4}\,A\,a\,\mathrm {atanh}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\right )}{d}+\frac {\sqrt {2}\,B\,a\,\mathrm {atan}\left (\sqrt {2}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (-1-\mathrm {i}\right )}{d} \] Input:

int(tan(c + d*x)^(1/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i),x)
 

Output:

(A*a*tan(c + d*x)^(1/2)*2i)/d + (2*B*a*tan(c + d*x)^(1/2))/d + (B*a*tan(c 
+ d*x)^(3/2)*2i)/(3*d) - (2*(-1)^(1/4)*A*a*atanh((-1)^(1/4)*tan(c + d*x)^( 
1/2)))/d - (2^(1/2)*B*a*atan(2^(1/2)*tan(c + d*x)^(1/2)*(1/2 - 1i/2))*(1 + 
 1i))/d
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx=\frac {a \left (2 \sqrt {\tan \left (d x +c \right )}\, a i +2 \sqrt {\tan \left (d x +c \right )}\, b -\left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )}d x \right ) a d i -\left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )}d x \right ) b d +\left (\int \sqrt {\tan \left (d x +c \right )}d x \right ) a d +\left (\int \sqrt {\tan \left (d x +c \right )}\, \tan \left (d x +c \right )^{2}d x \right ) b d i \right )}{d} \] Input:

int(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x)
 

Output:

(a*(2*sqrt(tan(c + d*x))*a*i + 2*sqrt(tan(c + d*x))*b - int(sqrt(tan(c + d 
*x))/tan(c + d*x),x)*a*d*i - int(sqrt(tan(c + d*x))/tan(c + d*x),x)*b*d + 
int(sqrt(tan(c + d*x)),x)*a*d + int(sqrt(tan(c + d*x))*tan(c + d*x)**2,x)* 
b*d*i))/d