\(\int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx\) [127]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 36, antiderivative size = 198 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=\frac {8 \sqrt [4]{-1} a^3 (A-i B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )}{d}+\frac {8 a^3 (A-i B) \sqrt {\tan (c+d x)}}{d}+\frac {8 a^3 (i A+B) \tan ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {16 a^3 (18 A-19 i B) \tan ^{\frac {5}{2}}(c+d x)}{315 d}+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}-\frac {2 (9 A-13 i B) \tan ^{\frac {5}{2}}(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{63 d} \] Output:

8*(-1)^(1/4)*a^3*(A-I*B)*arctan((-1)^(3/4)*tan(d*x+c)^(1/2))/d+8*a^3*(A-I* 
B)*tan(d*x+c)^(1/2)/d+8/3*a^3*(I*A+B)*tan(d*x+c)^(3/2)/d-16/315*a^3*(18*A- 
19*I*B)*tan(d*x+c)^(5/2)/d+2/9*I*a*B*tan(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^2 
/d-2/63*(9*A-13*I*B)*tan(d*x+c)^(5/2)*(a^3+I*a^3*tan(d*x+c))/d
 

Mathematica [A] (verified)

Time = 2.04 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.65 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=\frac {2 a^3 \left (1260 \sqrt [4]{-1} (A-i B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )+\sqrt {\tan (c+d x)} \left (1260 (A-i B)+420 (i A+B) \tan (c+d x)-63 (3 A-4 i B) \tan ^2(c+d x)-45 i (A-3 i B) \tan ^3(c+d x)-35 i B \tan ^4(c+d x)\right )\right )}{315 d} \] Input:

Integrate[Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^3*(A + B*Tan[c + d*x]) 
,x]
 

Output:

(2*a^3*(1260*(-1)^(1/4)*(A - I*B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] + 
Sqrt[Tan[c + d*x]]*(1260*(A - I*B) + 420*(I*A + B)*Tan[c + d*x] - 63*(3*A 
- (4*I)*B)*Tan[c + d*x]^2 - (45*I)*(A - (3*I)*B)*Tan[c + d*x]^3 - (35*I)*B 
*Tan[c + d*x]^4)))/(315*d)
 

Rubi [A] (verified)

Time = 1.20 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.04, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {3042, 4077, 27, 3042, 4077, 27, 3042, 4075, 3042, 4011, 3042, 4011, 3042, 4016, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \tan (c+d x)^{3/2} (a+i a \tan (c+d x))^3 (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 4077

\(\displaystyle \frac {2}{9} \int \frac {1}{2} \tan ^{\frac {3}{2}}(c+d x) (i \tan (c+d x) a+a)^2 (a (9 A-5 i B)+a (9 i A+13 B) \tan (c+d x))dx+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \int \tan ^{\frac {3}{2}}(c+d x) (i \tan (c+d x) a+a)^2 (a (9 A-5 i B)+a (9 i A+13 B) \tan (c+d x))dx+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \int \tan (c+d x)^{3/2} (i \tan (c+d x) a+a)^2 (a (9 A-5 i B)+a (9 i A+13 B) \tan (c+d x))dx+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}\)

\(\Big \downarrow \) 4077

\(\displaystyle \frac {1}{9} \left (\frac {2}{7} \int 2 \tan ^{\frac {3}{2}}(c+d x) (i \tan (c+d x) a+a) \left ((27 A-25 i B) a^2+2 (18 i A+19 B) \tan (c+d x) a^2\right )dx-\frac {2 (9 A-13 i B) \tan ^{\frac {5}{2}}(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{7 d}\right )+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (\frac {4}{7} \int \tan ^{\frac {3}{2}}(c+d x) (i \tan (c+d x) a+a) \left ((27 A-25 i B) a^2+2 (18 i A+19 B) \tan (c+d x) a^2\right )dx-\frac {2 (9 A-13 i B) \tan ^{\frac {5}{2}}(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{7 d}\right )+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\frac {4}{7} \int \tan (c+d x)^{3/2} (i \tan (c+d x) a+a) \left ((27 A-25 i B) a^2+2 (18 i A+19 B) \tan (c+d x) a^2\right )dx-\frac {2 (9 A-13 i B) \tan ^{\frac {5}{2}}(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{7 d}\right )+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}\)

\(\Big \downarrow \) 4075

\(\displaystyle \frac {1}{9} \left (\frac {4}{7} \left (\int \tan ^{\frac {3}{2}}(c+d x) \left (63 (A-i B) a^3+63 (i A+B) \tan (c+d x) a^3\right )dx-\frac {4 a^3 (18 A-19 i B) \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )-\frac {2 (9 A-13 i B) \tan ^{\frac {5}{2}}(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{7 d}\right )+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\frac {4}{7} \left (\int \tan (c+d x)^{3/2} \left (63 (A-i B) a^3+63 (i A+B) \tan (c+d x) a^3\right )dx-\frac {4 a^3 (18 A-19 i B) \tan ^{\frac {5}{2}}(c+d x)}{5 d}\right )-\frac {2 (9 A-13 i B) \tan ^{\frac {5}{2}}(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{7 d}\right )+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}\)

\(\Big \downarrow \) 4011

\(\displaystyle \frac {1}{9} \left (\frac {4}{7} \left (\int \sqrt {\tan (c+d x)} \left (63 a^3 (A-i B) \tan (c+d x)-63 a^3 (i A+B)\right )dx-\frac {4 a^3 (18 A-19 i B) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {42 a^3 (B+i A) \tan ^{\frac {3}{2}}(c+d x)}{d}\right )-\frac {2 (9 A-13 i B) \tan ^{\frac {5}{2}}(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{7 d}\right )+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\frac {4}{7} \left (\int \sqrt {\tan (c+d x)} \left (63 a^3 (A-i B) \tan (c+d x)-63 a^3 (i A+B)\right )dx-\frac {4 a^3 (18 A-19 i B) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {42 a^3 (B+i A) \tan ^{\frac {3}{2}}(c+d x)}{d}\right )-\frac {2 (9 A-13 i B) \tan ^{\frac {5}{2}}(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{7 d}\right )+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}\)

\(\Big \downarrow \) 4011

\(\displaystyle \frac {1}{9} \left (\frac {4}{7} \left (\int \frac {-63 (A-i B) a^3-63 (i A+B) \tan (c+d x) a^3}{\sqrt {\tan (c+d x)}}dx-\frac {4 a^3 (18 A-19 i B) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {42 a^3 (B+i A) \tan ^{\frac {3}{2}}(c+d x)}{d}+\frac {126 a^3 (A-i B) \sqrt {\tan (c+d x)}}{d}\right )-\frac {2 (9 A-13 i B) \tan ^{\frac {5}{2}}(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{7 d}\right )+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\frac {4}{7} \left (\int \frac {-63 (A-i B) a^3-63 (i A+B) \tan (c+d x) a^3}{\sqrt {\tan (c+d x)}}dx-\frac {4 a^3 (18 A-19 i B) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {42 a^3 (B+i A) \tan ^{\frac {3}{2}}(c+d x)}{d}+\frac {126 a^3 (A-i B) \sqrt {\tan (c+d x)}}{d}\right )-\frac {2 (9 A-13 i B) \tan ^{\frac {5}{2}}(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{7 d}\right )+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}\)

\(\Big \downarrow \) 4016

\(\displaystyle \frac {1}{9} \left (\frac {4}{7} \left (\frac {7938 a^6 (A-i B)^2 \int \frac {1}{63 a^3 (i A+B) \tan (c+d x)-63 a^3 (A-i B)}d\sqrt {\tan (c+d x)}}{d}-\frac {4 a^3 (18 A-19 i B) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {42 a^3 (B+i A) \tan ^{\frac {3}{2}}(c+d x)}{d}+\frac {126 a^3 (A-i B) \sqrt {\tan (c+d x)}}{d}\right )-\frac {2 (9 A-13 i B) \tan ^{\frac {5}{2}}(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{7 d}\right )+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {1}{9} \left (\frac {4}{7} \left (\frac {126 \sqrt [4]{-1} a^3 (A-i B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )}{d}-\frac {4 a^3 (18 A-19 i B) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {42 a^3 (B+i A) \tan ^{\frac {3}{2}}(c+d x)}{d}+\frac {126 a^3 (A-i B) \sqrt {\tan (c+d x)}}{d}\right )-\frac {2 (9 A-13 i B) \tan ^{\frac {5}{2}}(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{7 d}\right )+\frac {2 i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^2}{9 d}\)

Input:

Int[Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^3*(A + B*Tan[c + d*x]),x]
 

Output:

(((2*I)/9)*a*B*Tan[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^2)/d + ((-2*(9*A 
- (13*I)*B)*Tan[c + d*x]^(5/2)*(a^3 + I*a^3*Tan[c + d*x]))/(7*d) + (4*((12 
6*(-1)^(1/4)*a^3*(A - I*B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]])/d + (126 
*a^3*(A - I*B)*Sqrt[Tan[c + d*x]])/d + (42*a^3*(I*A + B)*Tan[c + d*x]^(3/2 
))/d - (4*a^3*(18*A - (19*I)*B)*Tan[c + d*x]^(5/2))/(5*d)))/7)/9
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4011
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Int 
[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 
 0] && GtQ[m, 0]
 

rule 4016
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2*(c^2/f)   Subst[Int[1/(b*c - d*x^2), x], x, Sqrt[b 
*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]
 

rule 4075
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B 
*d*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f* 
x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ[m, -1]
 

rule 4077
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + 
n))), x] + Simp[1/(d*(m + n))   Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan 
[e + f*x])^n*Simp[a*A*d*(m + n) + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - 
 a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && 
GtQ[m, 1] &&  !LtQ[n, -1]
 
Maple [A] (verified)

Time = 0.08 (sec) , antiderivative size = 299, normalized size of antiderivative = 1.51

method result size
derivativedivides \(\frac {a^{3} \left (-\frac {2 i B \tan \left (d x +c \right )^{\frac {9}{2}}}{9}-\frac {2 i A \tan \left (d x +c \right )^{\frac {7}{2}}}{7}-\frac {6 B \tan \left (d x +c \right )^{\frac {7}{2}}}{7}+\frac {8 i B \tan \left (d x +c \right )^{\frac {5}{2}}}{5}-\frac {6 A \tan \left (d x +c \right )^{\frac {5}{2}}}{5}+\frac {8 i A \tan \left (d x +c \right )^{\frac {3}{2}}}{3}+\frac {8 B \tan \left (d x +c \right )^{\frac {3}{2}}}{3}-8 i B \sqrt {\tan \left (d x +c \right )}+8 A \sqrt {\tan \left (d x +c \right )}+\frac {\left (4 i B -4 A \right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}+\frac {\left (-4 i A -4 B \right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}\) \(299\)
default \(\frac {a^{3} \left (-\frac {2 i B \tan \left (d x +c \right )^{\frac {9}{2}}}{9}-\frac {2 i A \tan \left (d x +c \right )^{\frac {7}{2}}}{7}-\frac {6 B \tan \left (d x +c \right )^{\frac {7}{2}}}{7}+\frac {8 i B \tan \left (d x +c \right )^{\frac {5}{2}}}{5}-\frac {6 A \tan \left (d x +c \right )^{\frac {5}{2}}}{5}+\frac {8 i A \tan \left (d x +c \right )^{\frac {3}{2}}}{3}+\frac {8 B \tan \left (d x +c \right )^{\frac {3}{2}}}{3}-8 i B \sqrt {\tan \left (d x +c \right )}+8 A \sqrt {\tan \left (d x +c \right )}+\frac {\left (4 i B -4 A \right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}+\frac {\left (-4 i A -4 B \right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}\) \(299\)
parts \(\frac {\left (-i A \,a^{3}-3 B \,a^{3}\right ) \left (\frac {2 \tan \left (d x +c \right )^{\frac {7}{2}}}{7}-\frac {2 \tan \left (d x +c \right )^{\frac {3}{2}}}{3}+\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}+\frac {\left (3 i A \,a^{3}+B \,a^{3}\right ) \left (\frac {2 \tan \left (d x +c \right )^{\frac {3}{2}}}{3}-\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}+\frac {\left (3 i B \,a^{3}-3 A \,a^{3}\right ) \left (\frac {2 \tan \left (d x +c \right )^{\frac {5}{2}}}{5}-2 \sqrt {\tan \left (d x +c \right )}+\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}+\frac {A \,a^{3} \left (2 \sqrt {\tan \left (d x +c \right )}-\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}-\frac {i B \,a^{3} \left (\frac {2 \tan \left (d x +c \right )^{\frac {9}{2}}}{9}-\frac {2 \tan \left (d x +c \right )^{\frac {5}{2}}}{5}+2 \sqrt {\tan \left (d x +c \right )}-\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}\) \(593\)

Input:

int(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x,method=_RETUR 
NVERBOSE)
 

Output:

1/d*a^3*(-2/9*I*B*tan(d*x+c)^(9/2)-2/7*I*A*tan(d*x+c)^(7/2)-6/7*B*tan(d*x+ 
c)^(7/2)+8/5*I*B*tan(d*x+c)^(5/2)-6/5*A*tan(d*x+c)^(5/2)+8/3*I*A*tan(d*x+c 
)^(3/2)+8/3*B*tan(d*x+c)^(3/2)-8*I*B*tan(d*x+c)^(1/2)+8*A*tan(d*x+c)^(1/2) 
+1/4*(4*I*B-4*A)*2^(1/2)*(ln((tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1/2)+1)/(tan( 
d*x+c)-2^(1/2)*tan(d*x+c)^(1/2)+1))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2 
*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))+1/4*(-4*I*A-4*B)*2^(1/2)*(ln((tan(d* 
x+c)-2^(1/2)*tan(d*x+c)^(1/2)+1)/(tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1/2)+1))+ 
2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)) 
))
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 561 vs. \(2 (158) = 316\).

Time = 0.13 (sec) , antiderivative size = 561, normalized size of antiderivative = 2.83 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx =\text {Too large to display} \] Input:

integrate(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algori 
thm="fricas")
 

Output:

-2/315*(315*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^6/d^2)*(d*e^(8*I*d*x + 8*I*c) 
+ 4*d*e^(6*I*d*x + 6*I*c) + 6*d*e^(4*I*d*x + 4*I*c) + 4*d*e^(2*I*d*x + 2*I 
*c) + d)*log(-2*((A - I*B)*a^3*e^(2*I*d*x + 2*I*c) + sqrt(-(I*A^2 + 2*A*B 
- I*B^2)*a^6/d^2)*(I*d*e^(2*I*d*x + 2*I*c) + I*d)*sqrt((-I*e^(2*I*d*x + 2* 
I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)/((-I*A - B)*a^3 
)) - 315*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^6/d^2)*(d*e^(8*I*d*x + 8*I*c) + 4 
*d*e^(6*I*d*x + 6*I*c) + 6*d*e^(4*I*d*x + 4*I*c) + 4*d*e^(2*I*d*x + 2*I*c) 
 + d)*log(-2*((A - I*B)*a^3*e^(2*I*d*x + 2*I*c) + sqrt(-(I*A^2 + 2*A*B - I 
*B^2)*a^6/d^2)*(-I*d*e^(2*I*d*x + 2*I*c) - I*d)*sqrt((-I*e^(2*I*d*x + 2*I* 
c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)/((-I*A - B)*a^3)) 
 - 2*((957*A - 1051*I*B)*a^3*e^(8*I*d*x + 8*I*c) + 5*(579*A - 547*I*B)*a^3 
*e^(6*I*d*x + 6*I*c) + 21*(171*A - 173*I*B)*a^3*e^(4*I*d*x + 4*I*c) + 5*(4 
29*A - 433*I*B)*a^3*e^(2*I*d*x + 2*I*c) + 4*(123*A - 124*I*B)*a^3)*sqrt((- 
I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))/(d*e^(8*I*d*x + 8*I 
*c) + 4*d*e^(6*I*d*x + 6*I*c) + 6*d*e^(4*I*d*x + 4*I*c) + 4*d*e^(2*I*d*x + 
 2*I*c) + d)
 

Sympy [F(-1)]

Timed out. \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(tan(d*x+c)**(3/2)*(a+I*a*tan(d*x+c))**3*(A+B*tan(d*x+c)),x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.18 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=-\frac {70 i \, B a^{3} \tan \left (d x + c\right )^{\frac {9}{2}} + 90 \, {\left (i \, A + 3 \, B\right )} a^{3} \tan \left (d x + c\right )^{\frac {7}{2}} + 126 \, {\left (3 \, A - 4 i \, B\right )} a^{3} \tan \left (d x + c\right )^{\frac {5}{2}} + 840 \, {\left (-i \, A - B\right )} a^{3} \tan \left (d x + c\right )^{\frac {3}{2}} - 2520 \, {\left (A - i \, B\right )} a^{3} \sqrt {\tan \left (d x + c\right )} + 315 \, {\left (2 \, \sqrt {2} {\left (\left (i + 1\right ) \, A - \left (i - 1\right ) \, B\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt {2} {\left (\left (i + 1\right ) \, A - \left (i - 1\right ) \, B\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )\right )} a^{3}}{315 \, d} \] Input:

integrate(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algori 
thm="maxima")
 

Output:

-1/315*(70*I*B*a^3*tan(d*x + c)^(9/2) + 90*(I*A + 3*B)*a^3*tan(d*x + c)^(7 
/2) + 126*(3*A - 4*I*B)*a^3*tan(d*x + c)^(5/2) + 840*(-I*A - B)*a^3*tan(d* 
x + c)^(3/2) - 2520*(A - I*B)*a^3*sqrt(tan(d*x + c)) + 315*(2*sqrt(2)*((I 
+ 1)*A - (I - 1)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)))) + 
 2*sqrt(2)*((I + 1)*A - (I - 1)*B)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(t 
an(d*x + c)))) - sqrt(2)*((I - 1)*A + (I + 1)*B)*log(sqrt(2)*sqrt(tan(d*x 
+ c)) + tan(d*x + c) + 1) + sqrt(2)*((I - 1)*A + (I + 1)*B)*log(-sqrt(2)*s 
qrt(tan(d*x + c)) + tan(d*x + c) + 1))*a^3)/d
 

Giac [A] (verification not implemented)

Time = 0.83 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.83 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=-\frac {2 \, {\left (35 i \, B a^{3} \tan \left (d x + c\right )^{\frac {9}{2}} + 45 i \, A a^{3} \tan \left (d x + c\right )^{\frac {7}{2}} + 135 \, B a^{3} \tan \left (d x + c\right )^{\frac {7}{2}} + 189 \, A a^{3} \tan \left (d x + c\right )^{\frac {5}{2}} - 252 i \, B a^{3} \tan \left (d x + c\right )^{\frac {5}{2}} - 420 i \, A a^{3} \tan \left (d x + c\right )^{\frac {3}{2}} - 420 \, B a^{3} \tan \left (d x + c\right )^{\frac {3}{2}} - 1260 \, A a^{3} \sqrt {\tan \left (d x + c\right )} + 1260 i \, B a^{3} \sqrt {\tan \left (d x + c\right )} + 630 \, \sqrt {2} {\left (\left (i + 1\right ) \, A a^{3} - \left (i - 1\right ) \, B a^{3}\right )} \arctan \left (-\left (\frac {1}{2} i - \frac {1}{2}\right ) \, \sqrt {2} \sqrt {\tan \left (d x + c\right )}\right )\right )}}{315 \, d} \] Input:

integrate(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algori 
thm="giac")
 

Output:

-2/315*(35*I*B*a^3*tan(d*x + c)^(9/2) + 45*I*A*a^3*tan(d*x + c)^(7/2) + 13 
5*B*a^3*tan(d*x + c)^(7/2) + 189*A*a^3*tan(d*x + c)^(5/2) - 252*I*B*a^3*ta 
n(d*x + c)^(5/2) - 420*I*A*a^3*tan(d*x + c)^(3/2) - 420*B*a^3*tan(d*x + c) 
^(3/2) - 1260*A*a^3*sqrt(tan(d*x + c)) + 1260*I*B*a^3*sqrt(tan(d*x + c)) + 
 630*sqrt(2)*((I + 1)*A*a^3 - (I - 1)*B*a^3)*arctan(-(1/2*I - 1/2)*sqrt(2) 
*sqrt(tan(d*x + c))))/d
 

Mupad [B] (verification not implemented)

Time = 8.25 (sec) , antiderivative size = 327, normalized size of antiderivative = 1.65 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=\frac {8\,A\,a^3\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{d}+\frac {A\,a^3\,{\mathrm {tan}\left (c+d\,x\right )}^{3/2}\,8{}\mathrm {i}}{3\,d}-\frac {6\,A\,a^3\,{\mathrm {tan}\left (c+d\,x\right )}^{5/2}}{5\,d}-\frac {A\,a^3\,{\mathrm {tan}\left (c+d\,x\right )}^{7/2}\,2{}\mathrm {i}}{7\,d}-\frac {B\,a^3\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,8{}\mathrm {i}}{d}+\frac {8\,B\,a^3\,{\mathrm {tan}\left (c+d\,x\right )}^{3/2}}{3\,d}+\frac {B\,a^3\,{\mathrm {tan}\left (c+d\,x\right )}^{5/2}\,8{}\mathrm {i}}{5\,d}-\frac {6\,B\,a^3\,{\mathrm {tan}\left (c+d\,x\right )}^{7/2}}{7\,d}-\frac {B\,a^3\,{\mathrm {tan}\left (c+d\,x\right )}^{9/2}\,2{}\mathrm {i}}{9\,d}+\frac {\sqrt {2}\,A\,a^3\,\ln \left (-A\,a^3\,d\,8{}\mathrm {i}+\sqrt {2}\,A\,a^3\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\left (-4+4{}\mathrm {i}\right )\right )\,\left (2-2{}\mathrm {i}\right )}{d}-\frac {\sqrt {-16{}\mathrm {i}}\,A\,a^3\,\ln \left (-A\,a^3\,d\,8{}\mathrm {i}+2\,\sqrt {-16{}\mathrm {i}}\,A\,a^3\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\right )}{d}+\frac {\sqrt {2}\,B\,a^3\,\ln \left (-8\,B\,a^3\,d+\sqrt {2}\,B\,a^3\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\left (-4-4{}\mathrm {i}\right )\right )\,\left (2+2{}\mathrm {i}\right )}{d}-\frac {\sqrt {16{}\mathrm {i}}\,B\,a^3\,\ln \left (-8\,B\,a^3\,d+2\,\sqrt {16{}\mathrm {i}}\,B\,a^3\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\right )}{d} \] Input:

int(tan(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^3,x)
 

Output:

(8*A*a^3*tan(c + d*x)^(1/2))/d + (A*a^3*tan(c + d*x)^(3/2)*8i)/(3*d) - (6* 
A*a^3*tan(c + d*x)^(5/2))/(5*d) - (A*a^3*tan(c + d*x)^(7/2)*2i)/(7*d) - (B 
*a^3*tan(c + d*x)^(1/2)*8i)/d + (8*B*a^3*tan(c + d*x)^(3/2))/(3*d) + (B*a^ 
3*tan(c + d*x)^(5/2)*8i)/(5*d) - (6*B*a^3*tan(c + d*x)^(7/2))/(7*d) - (B*a 
^3*tan(c + d*x)^(9/2)*2i)/(9*d) + (2^(1/2)*A*a^3*log(- A*a^3*d*8i - 2^(1/2 
)*A*a^3*d*tan(c + d*x)^(1/2)*(4 - 4i))*(2 - 2i))/d - ((-16i)^(1/2)*A*a^3*l 
og(2*(-16i)^(1/2)*A*a^3*d*tan(c + d*x)^(1/2) - A*a^3*d*8i))/d + (2^(1/2)*B 
*a^3*log(- 8*B*a^3*d - 2^(1/2)*B*a^3*d*tan(c + d*x)^(1/2)*(4 + 4i))*(2 + 2 
i))/d - (16i^(1/2)*B*a^3*log(2*16i^(1/2)*B*a^3*d*tan(c + d*x)^(1/2) - 8*B* 
a^3*d))/d
 

Reduce [F]

\[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=\frac {a^{3} \left (-10 \sqrt {\tan \left (d x +c \right )}\, \tan \left (d x +c \right )^{4} b i -54 \sqrt {\tan \left (d x +c \right )}\, \tan \left (d x +c \right )^{2} a +72 \sqrt {\tan \left (d x +c \right )}\, \tan \left (d x +c \right )^{2} b i +360 \sqrt {\tan \left (d x +c \right )}\, a -360 \sqrt {\tan \left (d x +c \right )}\, b i -180 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )}d x \right ) a d +180 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )}d x \right ) b d i -45 \left (\int \sqrt {\tan \left (d x +c \right )}\, \tan \left (d x +c \right )^{4}d x \right ) a d i -135 \left (\int \sqrt {\tan \left (d x +c \right )}\, \tan \left (d x +c \right )^{4}d x \right ) b d +135 \left (\int \sqrt {\tan \left (d x +c \right )}\, \tan \left (d x +c \right )^{2}d x \right ) a d i +45 \left (\int \sqrt {\tan \left (d x +c \right )}\, \tan \left (d x +c \right )^{2}d x \right ) b d \right )}{45 d} \] Input:

int(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x)
 

Output:

(a**3*( - 10*sqrt(tan(c + d*x))*tan(c + d*x)**4*b*i - 54*sqrt(tan(c + d*x) 
)*tan(c + d*x)**2*a + 72*sqrt(tan(c + d*x))*tan(c + d*x)**2*b*i + 360*sqrt 
(tan(c + d*x))*a - 360*sqrt(tan(c + d*x))*b*i - 180*int(sqrt(tan(c + d*x)) 
/tan(c + d*x),x)*a*d + 180*int(sqrt(tan(c + d*x))/tan(c + d*x),x)*b*d*i - 
45*int(sqrt(tan(c + d*x))*tan(c + d*x)**4,x)*a*d*i - 135*int(sqrt(tan(c + 
d*x))*tan(c + d*x)**4,x)*b*d + 135*int(sqrt(tan(c + d*x))*tan(c + d*x)**2, 
x)*a*d*i + 45*int(sqrt(tan(c + d*x))*tan(c + d*x)**2,x)*b*d))/(45*d)