\(\int \frac {(a+i a \tan (c+d x))^3 (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx\) [133]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 36, antiderivative size = 169 \[ \int \frac {(a+i a \tan (c+d x))^3 (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {8 \sqrt [4]{-1} a^3 (A-i B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )}{d}+\frac {8 a^3 (23 A-21 i B)}{105 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {8 a^3 (i A+B)}{d \sqrt {\tan (c+d x)}}-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}-\frac {2 (11 i A+7 B) \left (a^3+i a^3 \tan (c+d x)\right )}{35 d \tan ^{\frac {5}{2}}(c+d x)} \] Output:

-8*(-1)^(1/4)*a^3*(A-I*B)*arctan((-1)^(3/4)*tan(d*x+c)^(1/2))/d+8/105*a^3* 
(23*A-21*I*B)/d/tan(d*x+c)^(3/2)+8*a^3*(I*A+B)/d/tan(d*x+c)^(1/2)-2/7*a*A* 
(a+I*a*tan(d*x+c))^2/d/tan(d*x+c)^(7/2)-2/35*(11*I*A+7*B)*(a^3+I*a^3*tan(d 
*x+c))/d/tan(d*x+c)^(5/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 2.24 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.70 \[ \int \frac {(a+i a \tan (c+d x))^3 (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {2 a^3 \left (15 A+21 (3 i A+B) \tan (c+d x)-35 (4 A-3 i B) \tan ^2(c+d x)-420 i (A-i B) \tan ^3(c+d x)+420 \sqrt [4]{-1} (A-i B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right ) \tan ^{\frac {7}{2}}(c+d x)\right )}{105 d \tan ^{\frac {7}{2}}(c+d x)} \] Input:

Integrate[((a + I*a*Tan[c + d*x])^3*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(9/ 
2),x]
 

Output:

(-2*a^3*(15*A + 21*((3*I)*A + B)*Tan[c + d*x] - 35*(4*A - (3*I)*B)*Tan[c + 
 d*x]^2 - (420*I)*(A - I*B)*Tan[c + d*x]^3 + 420*(-1)^(1/4)*(A - I*B)*ArcT 
an[(-1)^(3/4)*Sqrt[Tan[c + d*x]]]*Tan[c + d*x]^(7/2)))/(105*d*Tan[c + d*x] 
^(7/2))
 

Rubi [A] (verified)

Time = 1.05 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.08, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {3042, 4076, 27, 3042, 4076, 27, 3042, 4074, 27, 3042, 4012, 25, 3042, 4016, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^3 (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^3 (A+B \tan (c+d x))}{\tan (c+d x)^{9/2}}dx\)

\(\Big \downarrow \) 4076

\(\displaystyle \frac {2}{7} \int \frac {(i \tan (c+d x) a+a)^2 (a (11 i A+7 B)-a (3 A-7 i B) \tan (c+d x))}{2 \tan ^{\frac {7}{2}}(c+d x)}dx-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \int \frac {(i \tan (c+d x) a+a)^2 (a (11 i A+7 B)-a (3 A-7 i B) \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)}dx-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \int \frac {(i \tan (c+d x) a+a)^2 (a (11 i A+7 B)-a (3 A-7 i B) \tan (c+d x))}{\tan (c+d x)^{7/2}}dx-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4076

\(\displaystyle \frac {1}{7} \left (\frac {2}{5} \int -\frac {2 (i \tan (c+d x) a+a) \left ((23 A-21 i B) a^2+2 (6 i A+7 B) \tan (c+d x) a^2\right )}{\tan ^{\frac {5}{2}}(c+d x)}dx-\frac {2 (7 B+11 i A) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (-\frac {4}{5} \int \frac {(i \tan (c+d x) a+a) \left ((23 A-21 i B) a^2+2 (6 i A+7 B) \tan (c+d x) a^2\right )}{\tan ^{\frac {5}{2}}(c+d x)}dx-\frac {2 (7 B+11 i A) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (-\frac {4}{5} \int \frac {(i \tan (c+d x) a+a) \left ((23 A-21 i B) a^2+2 (6 i A+7 B) \tan (c+d x) a^2\right )}{\tan (c+d x)^{5/2}}dx-\frac {2 (7 B+11 i A) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4074

\(\displaystyle \frac {1}{7} \left (-\frac {4}{5} \left (\int \frac {35 \left (a^3 (i A+B)-a^3 (A-i B) \tan (c+d x)\right )}{\tan ^{\frac {3}{2}}(c+d x)}dx-\frac {2 a^3 (23 A-21 i B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 (7 B+11 i A) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (-\frac {4}{5} \left (35 \int \frac {a^3 (i A+B)-a^3 (A-i B) \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x)}dx-\frac {2 a^3 (23 A-21 i B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 (7 B+11 i A) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (-\frac {4}{5} \left (35 \int \frac {a^3 (i A+B)-a^3 (A-i B) \tan (c+d x)}{\tan (c+d x)^{3/2}}dx-\frac {2 a^3 (23 A-21 i B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 (7 B+11 i A) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4012

\(\displaystyle \frac {1}{7} \left (-\frac {4}{5} \left (35 \left (\int -\frac {(A-i B) a^3+(i A+B) \tan (c+d x) a^3}{\sqrt {\tan (c+d x)}}dx-\frac {2 a^3 (B+i A)}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a^3 (23 A-21 i B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 (7 B+11 i A) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{7} \left (-\frac {4}{5} \left (35 \left (-\int \frac {(A-i B) a^3+(i A+B) \tan (c+d x) a^3}{\sqrt {\tan (c+d x)}}dx-\frac {2 a^3 (B+i A)}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a^3 (23 A-21 i B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 (7 B+11 i A) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (-\frac {4}{5} \left (35 \left (-\int \frac {(A-i B) a^3+(i A+B) \tan (c+d x) a^3}{\sqrt {\tan (c+d x)}}dx-\frac {2 a^3 (B+i A)}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a^3 (23 A-21 i B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 (7 B+11 i A) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4016

\(\displaystyle \frac {1}{7} \left (-\frac {4}{5} \left (35 \left (-\frac {2 a^6 (A-i B)^2 \int \frac {1}{a^3 (A-i B)-a^3 (i A+B) \tan (c+d x)}d\sqrt {\tan (c+d x)}}{d}-\frac {2 a^3 (B+i A)}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a^3 (23 A-21 i B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 (7 B+11 i A) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {1}{7} \left (-\frac {4}{5} \left (35 \left (\frac {2 \sqrt [4]{-1} a^3 (A-i B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )}{d}-\frac {2 a^3 (B+i A)}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a^3 (23 A-21 i B)}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 (7 B+11 i A) \left (a^3+i a^3 \tan (c+d x)\right )}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^2}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

Input:

Int[((a + I*a*Tan[c + d*x])^3*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(9/2),x]
 

Output:

(-2*a*A*(a + I*a*Tan[c + d*x])^2)/(7*d*Tan[c + d*x]^(7/2)) + ((-4*(35*((2* 
(-1)^(1/4)*a^3*(A - I*B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]])/d - (2*a^3 
*(I*A + B))/(d*Sqrt[Tan[c + d*x]])) - (2*a^3*(23*A - (21*I)*B))/(3*d*Tan[c 
 + d*x]^(3/2))))/5 - (2*((11*I)*A + 7*B)*(a^3 + I*a^3*Tan[c + d*x]))/(5*d* 
Tan[c + d*x]^(5/2)))/7
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4016
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2*(c^2/f)   Subst[Int[1/(b*c - d*x^2), x], x, Sqrt[b 
*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]
 

rule 4074
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b 
*c - a*d)*(A*b - a*B)*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 + b^2 
))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[a*A*c 
+ b*B*c + A*b*d - a*B*d - (A*b*c - a*B*c - a*A*d - b*B*d)*Tan[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && LtQ[m 
, -1] && NeQ[a^2 + b^2, 0]
 

rule 4076
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-a^2)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n 
+ 1)/(d*f*(b*c + a*d)*(n + 1))), x] - Simp[a/(d*(b*c + a*d)*(n + 1))   Int[ 
(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n 
 - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m - 1) + b 
*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] 
 && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]
 
Maple [A] (verified)

Time = 0.13 (sec) , antiderivative size = 258, normalized size of antiderivative = 1.53

method result size
derivativedivides \(\frac {a^{3} \left (\frac {\left (-4 i B +4 A \right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}+\frac {\left (4 i A +4 B \right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}-\frac {2 A}{7 \tan \left (d x +c \right )^{\frac {7}{2}}}-\frac {2 \left (-4 i A -4 B \right )}{\sqrt {\tan \left (d x +c \right )}}-\frac {2 \left (3 i A +B \right )}{5 \tan \left (d x +c \right )^{\frac {5}{2}}}-\frac {2 \left (3 i B -4 A \right )}{3 \tan \left (d x +c \right )^{\frac {3}{2}}}\right )}{d}\) \(258\)
default \(\frac {a^{3} \left (\frac {\left (-4 i B +4 A \right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}+\frac {\left (4 i A +4 B \right ) \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}-\frac {2 A}{7 \tan \left (d x +c \right )^{\frac {7}{2}}}-\frac {2 \left (-4 i A -4 B \right )}{\sqrt {\tan \left (d x +c \right )}}-\frac {2 \left (3 i A +B \right )}{5 \tan \left (d x +c \right )^{\frac {5}{2}}}-\frac {2 \left (3 i B -4 A \right )}{3 \tan \left (d x +c \right )^{\frac {3}{2}}}\right )}{d}\) \(258\)
parts \(\frac {\left (-i A \,a^{3}-3 B \,a^{3}\right ) \left (-\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}-\frac {2}{\sqrt {\tan \left (d x +c \right )}}\right )}{d}+\frac {\left (3 i A \,a^{3}+B \,a^{3}\right ) \left (\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}-\frac {2}{5 \tan \left (d x +c \right )^{\frac {5}{2}}}+\frac {2}{\sqrt {\tan \left (d x +c \right )}}\right )}{d}+\frac {\left (3 i B \,a^{3}-3 A \,a^{3}\right ) \left (-\frac {2}{3 \tan \left (d x +c \right )^{\frac {3}{2}}}-\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}\right )}{d}+\frac {A \,a^{3} \left (\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4}-\frac {2}{7 \tan \left (d x +c \right )^{\frac {7}{2}}}+\frac {2}{3 \tan \left (d x +c \right )^{\frac {3}{2}}}\right )}{d}-\frac {i B \,a^{3} \sqrt {2}\, \left (\ln \left (\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\tan \left (d x +c \right )-\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right )\right )}{4 d}\) \(560\)

Input:

int((a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c))/tan(d*x+c)^(9/2),x,method=_RETUR 
NVERBOSE)
 

Output:

1/d*a^3*(1/4*(-4*I*B+4*A)*2^(1/2)*(ln((tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1/2) 
+1)/(tan(d*x+c)-2^(1/2)*tan(d*x+c)^(1/2)+1))+2*arctan(1+2^(1/2)*tan(d*x+c) 
^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))+1/4*(4*I*A+4*B)*2^(1/2)*(ln 
((tan(d*x+c)-2^(1/2)*tan(d*x+c)^(1/2)+1)/(tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1 
/2)+1))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c 
)^(1/2)))-2/7*A/tan(d*x+c)^(7/2)-2*(-4*I*A-4*B)/tan(d*x+c)^(1/2)-2/5*(3*I* 
A+B)/tan(d*x+c)^(5/2)-2/3*(3*I*B-4*A)/tan(d*x+c)^(3/2))
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 561 vs. \(2 (137) = 274\).

Time = 0.13 (sec) , antiderivative size = 561, normalized size of antiderivative = 3.32 \[ \int \frac {(a+i a \tan (c+d x))^3 (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

integrate((a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c))/tan(d*x+c)^(9/2),x, algori 
thm="fricas")
 

Output:

2/105*(105*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^6/d^2)*(d*e^(8*I*d*x + 8*I*c) - 
 4*d*e^(6*I*d*x + 6*I*c) + 6*d*e^(4*I*d*x + 4*I*c) - 4*d*e^(2*I*d*x + 2*I* 
c) + d)*log(-2*((A - I*B)*a^3*e^(2*I*d*x + 2*I*c) + sqrt(-(I*A^2 + 2*A*B - 
 I*B^2)*a^6/d^2)*(I*d*e^(2*I*d*x + 2*I*c) + I*d)*sqrt((-I*e^(2*I*d*x + 2*I 
*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)/((-I*A - B)*a^3) 
) - 105*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^6/d^2)*(d*e^(8*I*d*x + 8*I*c) - 4* 
d*e^(6*I*d*x + 6*I*c) + 6*d*e^(4*I*d*x + 4*I*c) - 4*d*e^(2*I*d*x + 2*I*c) 
+ d)*log(-2*((A - I*B)*a^3*e^(2*I*d*x + 2*I*c) + sqrt(-(I*A^2 + 2*A*B - I* 
B^2)*a^6/d^2)*(-I*d*e^(2*I*d*x + 2*I*c) - I*d)*sqrt((-I*e^(2*I*d*x + 2*I*c 
) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)/((-I*A - B)*a^3)) 
- 2*((319*A - 273*I*B)*a^3*e^(8*I*d*x + 8*I*c) - 3*(109*A - 133*I*B)*a^3*e 
^(6*I*d*x + 6*I*c) - 5*(19*A - 21*I*B)*a^3*e^(4*I*d*x + 4*I*c) + 3*(129*A 
- 133*I*B)*a^3*e^(2*I*d*x + 2*I*c) - 4*(41*A - 42*I*B)*a^3)*sqrt((-I*e^(2* 
I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))/(d*e^(8*I*d*x + 8*I*c) - 4 
*d*e^(6*I*d*x + 6*I*c) + 6*d*e^(4*I*d*x + 4*I*c) - 4*d*e^(2*I*d*x + 2*I*c) 
 + d)
 

Sympy [F]

\[ \int \frac {(a+i a \tan (c+d x))^3 (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=- i a^{3} \left (\int \left (- \frac {3 A}{\tan ^{\frac {7}{2}}{\left (c + d x \right )}}\right )\, dx + \int \frac {A}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \left (- \frac {3 B}{\tan ^{\frac {5}{2}}{\left (c + d x \right )}}\right )\, dx + \int \frac {B}{\sqrt {\tan {\left (c + d x \right )}}}\, dx + \int \frac {i A}{\tan ^{\frac {9}{2}}{\left (c + d x \right )}}\, dx + \int \left (- \frac {3 i A}{\tan ^{\frac {5}{2}}{\left (c + d x \right )}}\right )\, dx + \int \frac {i B}{\tan ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx + \int \left (- \frac {3 i B}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\right )\, dx\right ) \] Input:

integrate((a+I*a*tan(d*x+c))**3*(A+B*tan(d*x+c))/tan(d*x+c)**(9/2),x)
 

Output:

-I*a**3*(Integral(-3*A/tan(c + d*x)**(7/2), x) + Integral(A/tan(c + d*x)** 
(3/2), x) + Integral(-3*B/tan(c + d*x)**(5/2), x) + Integral(B/sqrt(tan(c 
+ d*x)), x) + Integral(I*A/tan(c + d*x)**(9/2), x) + Integral(-3*I*A/tan(c 
 + d*x)**(5/2), x) + Integral(I*B/tan(c + d*x)**(7/2), x) + Integral(-3*I* 
B/tan(c + d*x)**(3/2), x))
 

Maxima [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.27 \[ \int \frac {(a+i a \tan (c+d x))^3 (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\frac {105 \, {\left (2 \, \sqrt {2} {\left (\left (i + 1\right ) \, A - \left (i - 1\right ) \, B\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt {2} {\left (\left (i + 1\right ) \, A - \left (i - 1\right ) \, B\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )\right )} a^{3} + \frac {2 \, {\left (420 \, {\left (i \, A + B\right )} a^{3} \tan \left (d x + c\right )^{3} + 35 \, {\left (4 \, A - 3 i \, B\right )} a^{3} \tan \left (d x + c\right )^{2} + 21 \, {\left (-3 i \, A - B\right )} a^{3} \tan \left (d x + c\right ) - 15 \, A a^{3}\right )}}{\tan \left (d x + c\right )^{\frac {7}{2}}}}{105 \, d} \] Input:

integrate((a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c))/tan(d*x+c)^(9/2),x, algori 
thm="maxima")
 

Output:

1/105*(105*(2*sqrt(2)*((I + 1)*A - (I - 1)*B)*arctan(1/2*sqrt(2)*(sqrt(2) 
+ 2*sqrt(tan(d*x + c)))) + 2*sqrt(2)*((I + 1)*A - (I - 1)*B)*arctan(-1/2*s 
qrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c)))) - sqrt(2)*((I - 1)*A + (I + 1)*B) 
*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + sqrt(2)*((I - 1)*A + 
 (I + 1)*B)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1))*a^3 + 2*( 
420*(I*A + B)*a^3*tan(d*x + c)^3 + 35*(4*A - 3*I*B)*a^3*tan(d*x + c)^2 + 2 
1*(-3*I*A - B)*a^3*tan(d*x + c) - 15*A*a^3)/tan(d*x + c)^(7/2))/d
 

Giac [A] (verification not implemented)

Time = 0.72 (sec) , antiderivative size = 134, normalized size of antiderivative = 0.79 \[ \int \frac {(a+i a \tan (c+d x))^3 (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (210 \, \sqrt {2} {\left (-\left (i + 1\right ) \, A a^{3} + \left (i - 1\right ) \, B a^{3}\right )} \arctan \left (-\left (\frac {1}{2} i - \frac {1}{2}\right ) \, \sqrt {2} \sqrt {\tan \left (d x + c\right )}\right ) + \frac {-420 i \, A a^{3} \tan \left (d x + c\right )^{3} - 420 \, B a^{3} \tan \left (d x + c\right )^{3} - 140 \, A a^{3} \tan \left (d x + c\right )^{2} + 105 i \, B a^{3} \tan \left (d x + c\right )^{2} + 63 i \, A a^{3} \tan \left (d x + c\right ) + 21 \, B a^{3} \tan \left (d x + c\right ) + 15 \, A a^{3}}{\tan \left (d x + c\right )^{\frac {7}{2}}}\right )}}{105 \, d} \] Input:

integrate((a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c))/tan(d*x+c)^(9/2),x, algori 
thm="giac")
 

Output:

-2/105*(210*sqrt(2)*(-(I + 1)*A*a^3 + (I - 1)*B*a^3)*arctan(-(1/2*I - 1/2) 
*sqrt(2)*sqrt(tan(d*x + c))) + (-420*I*A*a^3*tan(d*x + c)^3 - 420*B*a^3*ta 
n(d*x + c)^3 - 140*A*a^3*tan(d*x + c)^2 + 105*I*B*a^3*tan(d*x + c)^2 + 63* 
I*A*a^3*tan(d*x + c) + 21*B*a^3*tan(d*x + c) + 15*A*a^3)/tan(d*x + c)^(7/2 
))/d
 

Mupad [B] (verification not implemented)

Time = 6.99 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.73 \[ \int \frac {(a+i a \tan (c+d x))^3 (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {\frac {2\,A\,a^3}{7\,d}+\frac {A\,a^3\,\mathrm {tan}\left (c+d\,x\right )\,6{}\mathrm {i}}{5\,d}-\frac {8\,A\,a^3\,{\mathrm {tan}\left (c+d\,x\right )}^2}{3\,d}-\frac {A\,a^3\,{\mathrm {tan}\left (c+d\,x\right )}^3\,8{}\mathrm {i}}{d}}{{\mathrm {tan}\left (c+d\,x\right )}^{7/2}}-\frac {\frac {2\,B\,a^3}{5\,d}-\frac {8\,B\,a^3\,{\mathrm {tan}\left (c+d\,x\right )}^2}{d}+\frac {B\,a^3\,\mathrm {tan}\left (c+d\,x\right )\,2{}\mathrm {i}}{d}}{{\mathrm {tan}\left (c+d\,x\right )}^{5/2}}+\frac {\sqrt {2}\,A\,a^3\,\ln \left (A\,a^3\,d\,8{}\mathrm {i}+\sqrt {2}\,A\,a^3\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\left (-4+4{}\mathrm {i}\right )\right )\,\left (2-2{}\mathrm {i}\right )}{d}-\frac {\sqrt {-16{}\mathrm {i}}\,A\,a^3\,\ln \left (A\,a^3\,d\,8{}\mathrm {i}+2\,\sqrt {-16{}\mathrm {i}}\,A\,a^3\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\right )}{d}+\frac {\sqrt {2}\,B\,a^3\,\ln \left (8\,B\,a^3\,d+\sqrt {2}\,B\,a^3\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\left (-4-4{}\mathrm {i}\right )\right )\,\left (2+2{}\mathrm {i}\right )}{d}-\frac {\sqrt {16{}\mathrm {i}}\,B\,a^3\,\ln \left (8\,B\,a^3\,d+2\,\sqrt {16{}\mathrm {i}}\,B\,a^3\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\right )}{d} \] Input:

int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^3)/tan(c + d*x)^(9/2),x)
 

Output:

(2^(1/2)*A*a^3*log(A*a^3*d*8i - 2^(1/2)*A*a^3*d*tan(c + d*x)^(1/2)*(4 - 4i 
))*(2 - 2i))/d - ((2*B*a^3)/(5*d) + (B*a^3*tan(c + d*x)*2i)/d - (8*B*a^3*t 
an(c + d*x)^2)/d)/tan(c + d*x)^(5/2) - ((2*A*a^3)/(7*d) + (A*a^3*tan(c + d 
*x)*6i)/(5*d) - (8*A*a^3*tan(c + d*x)^2)/(3*d) - (A*a^3*tan(c + d*x)^3*8i) 
/d)/tan(c + d*x)^(7/2) - ((-16i)^(1/2)*A*a^3*log(A*a^3*d*8i + 2*(-16i)^(1/ 
2)*A*a^3*d*tan(c + d*x)^(1/2)))/d + (2^(1/2)*B*a^3*log(8*B*a^3*d - 2^(1/2) 
*B*a^3*d*tan(c + d*x)^(1/2)*(4 + 4i))*(2 + 2i))/d - (16i^(1/2)*B*a^3*log(8 
*B*a^3*d + 2*16i^(1/2)*B*a^3*d*tan(c + d*x)^(1/2)))/d
 

Reduce [F]

\[ \int \frac {(a+i a \tan (c+d x))^3 (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=a^{3} \left (\left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )^{5}}d x \right ) a +3 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )^{4}}d x \right ) a i +\left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )^{4}}d x \right ) b -3 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )^{3}}d x \right ) a +3 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )^{3}}d x \right ) b i -\left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )^{2}}d x \right ) a i -3 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )^{2}}d x \right ) b -\left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )}d x \right ) b i \right ) \] Input:

int((a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c))/tan(d*x+c)^(9/2),x)
 

Output:

a**3*(int(sqrt(tan(c + d*x))/tan(c + d*x)**5,x)*a + 3*int(sqrt(tan(c + d*x 
))/tan(c + d*x)**4,x)*a*i + int(sqrt(tan(c + d*x))/tan(c + d*x)**4,x)*b - 
3*int(sqrt(tan(c + d*x))/tan(c + d*x)**3,x)*a + 3*int(sqrt(tan(c + d*x))/t 
an(c + d*x)**3,x)*b*i - int(sqrt(tan(c + d*x))/tan(c + d*x)**2,x)*a*i - 3* 
int(sqrt(tan(c + d*x))/tan(c + d*x)**2,x)*b - int(sqrt(tan(c + d*x))/tan(c 
 + d*x),x)*b*i)