\(\int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx\) [155]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 38, antiderivative size = 152 \[ \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {(-1)^{3/4} \sqrt {a} (2 A-i B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {(1+i) \sqrt {a} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d} \] Output:

-(-1)^(3/4)*a^(1/2)*(2*A-I*B)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/( 
a+I*a*tan(d*x+c))^(1/2))/d-(1+I)*a^(1/2)*(A-I*B)*arctanh((1+I)*a^(1/2)*tan 
(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+B*tan(d*x+c)^(1/2)*(a+I*a*tan(d* 
x+c))^(1/2)/d
 

Mathematica [A] (verified)

Time = 3.44 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.24 \[ \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {\sqrt [4]{-1} a (2 A-i B) \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {1+i \tan (c+d x)}+\frac {a B (1+i \tan (c+d x)) \tan (c+d x)-\sqrt {2} (A-i B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}}}{d \sqrt {a+i a \tan (c+d x)}} \] Input:

Integrate[Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x 
]),x]
 

Output:

((-1)^(1/4)*a*(2*A - I*B)*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*Sqrt[1 + 
I*Tan[c + d*x]] + (a*B*(1 + I*Tan[c + d*x])*Tan[c + d*x] - Sqrt[2]*(A - I* 
B)*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sq 
rt[I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[Tan[c + d*x]])/(d*Sq 
rt[a + I*a*Tan[c + d*x]])
 

Rubi [A] (verified)

Time = 0.91 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.289, Rules used = {3042, 4080, 27, 3042, 4084, 3042, 4027, 218, 4082, 65, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 4080

\(\displaystyle \frac {\int -\frac {\sqrt {i \tan (c+d x) a+a} (a B-a (2 A-i B) \tan (c+d x))}{2 \sqrt {\tan (c+d x)}}dx}{a}+\frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (a B-a (2 A-i B) \tan (c+d x))}{\sqrt {\tan (c+d x)}}dx}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (a B-a (2 A-i B) \tan (c+d x))}{\sqrt {\tan (c+d x)}}dx}{2 a}\)

\(\Big \downarrow \) 4084

\(\displaystyle \frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-(B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-(B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {-\frac {4 i a^3 (B+i A) \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-(B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(2-2 i) a^{3/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-(B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\)

\(\Big \downarrow \) 4082

\(\displaystyle \frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(2-2 i) a^{3/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {a^2 (B+2 i A) \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}d\tan (c+d x)}{d}}{2 a}\)

\(\Big \downarrow \) 65

\(\displaystyle \frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(2-2 i) a^{3/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2 (B+2 i A) \int \frac {1}{1-\frac {i a \tan (c+d x)}{i \tan (c+d x) a+a}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}}{2 a}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {2 \sqrt [4]{-1} a^{3/2} (B+2 i A) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(2-2 i) a^{3/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{2 a}\)

Input:

Int[Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]
 

Output:

-1/2*((2*(-1)^(1/4)*a^(3/2)*((2*I)*A + B)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[ 
Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + ((2 - 2*I)*a^(3/2)*(I*A + 
B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]] 
])/d)/a + (B*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4080
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] + Simp[ 
1/(a*(m + n))   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Sim 
p[a*A*c*(m + n) - B*(b*c*m + a*d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*T 
an[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c 
 - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]
 

rule 4082
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(B/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x]], 
x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 + b^2, 0] && EqQ[A*b + a*B, 0]
 

rule 4084
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b + a*B)/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x], x] 
 - Simp[B/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[ 
e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - 
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 576 vs. \(2 (123 ) = 246\).

Time = 0.27 (sec) , antiderivative size = 577, normalized size of antiderivative = 3.80

method result size
parts \(-\frac {A \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \left (i \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right )-\sqrt {2}\, \tan \left (d x +c \right ) \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right )+2 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \tan \left (d x +c \right )+2 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right )\right )}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \left (i-\tan \left (d x +c \right )\right ) \sqrt {-i a}}+\frac {B \left (i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+\ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {\tan \left (d x +c \right )}}{2 d \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}}\) \(577\)
derivativedivides \(-\frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (i B \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+2 i A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )+i A \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -A \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-i B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -2 i B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )+B \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +2 B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+2 A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \right )}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \left (i-\tan \left (d x +c \right )\right ) \sqrt {-i a}}\) \(713\)
default \(-\frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (i B \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+2 i A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )+i A \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -A \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-i B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -2 i B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )+B \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +2 B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+2 A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \right )}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \left (i-\tan \left (d x +c \right )\right ) \sqrt {-i a}}\) \(713\)

Input:

int(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x,method=_R 
ETURNVERBOSE)
 

Output:

-1/2*A/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*a*(I*2^(1/2)*(I*a)^(1 
/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3 
*a*tan(d*x+c))/(tan(d*x+c)+I))-2^(1/2)*tan(d*x+c)*(I*a)^(1/2)*ln((2*2^(1/2 
)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/( 
tan(d*x+c)+I))+2*I*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*( 
1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*tan(d*x+c)+2*(-I*a)^(1/ 
2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^ 
(1/2)+a)/(I*a)^(1/2)))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/( 
I-tan(d*x+c))/(-I*a)^(1/2)+1/2*B/d*(I*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*( 
a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*( 
I*a)^(1/2)*a+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1 
/2)+ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a) 
^(1/2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2))*(a*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+ 
c)^(1/2)/(-I*a)^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 673 vs. \(2 (114) = 228\).

Time = 0.12 (sec) , antiderivative size = 673, normalized size of antiderivative = 4.43 \[ \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx =\text {Too large to display} \] Input:

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, al 
gorithm="fricas")
 

Output:

1/2*(2*sqrt(2)*B*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2 
*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - sqrt(2)*d*sqrt(-(- 
I*A^2 - 2*A*B + I*B^2)*a/d^2)*log((sqrt(2)*d*sqrt(-(-I*A^2 - 2*A*B + I*B^2 
)*a/d^2)*e^(I*d*x + I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + 
B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^ 
(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/(I*A + B)) + sqrt(2)*d*sqrt(-(-I 
*A^2 - 2*A*B + I*B^2)*a/d^2)*log(-(sqrt(2)*d*sqrt(-(-I*A^2 - 2*A*B + I*B^2 
)*a/d^2)*e^(I*d*x + I*c) - sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + 
B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^ 
(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/(I*A + B)) + d*sqrt((4*I*A^2 + 4 
*A*B - I*B^2)*a/d^2)*log((sqrt(2)*((2*I*A + B)*e^(2*I*d*x + 2*I*c) + 2*I*A 
 + B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/ 
(e^(2*I*d*x + 2*I*c) + 1)) + 2*d*sqrt((4*I*A^2 + 4*A*B - I*B^2)*a/d^2)*e^( 
I*d*x + I*c))*e^(-I*d*x - I*c)/(2*I*A + B)) - d*sqrt((4*I*A^2 + 4*A*B - I* 
B^2)*a/d^2)*log((sqrt(2)*((2*I*A + B)*e^(2*I*d*x + 2*I*c) + 2*I*A + B)*sqr 
t(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d 
*x + 2*I*c) + 1)) - 2*d*sqrt((4*I*A^2 + 4*A*B - I*B^2)*a/d^2)*e^(I*d*x + I 
*c))*e^(-I*d*x - I*c)/(2*I*A + B)))/d
 

Sympy [F]

\[ \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \left (A + B \tan {\left (c + d x \right )}\right ) \sqrt {\tan {\left (c + d x \right )}}\, dx \] Input:

integrate(tan(d*x+c)**(1/2)*(a+I*a*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)
 

Output:

Integral(sqrt(I*a*(tan(c + d*x) - I))*(A + B*tan(c + d*x))*sqrt(tan(c + d* 
x)), x)
 

Maxima [F]

\[ \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {i \, a \tan \left (d x + c\right ) + a} \sqrt {\tan \left (d x + c\right )} \,d x } \] Input:

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, al 
gorithm="maxima")
 

Output:

integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)*sqrt(tan(d*x + c 
)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Exception raised: TypeError} \] Input:

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, al 
gorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeError: Bad Argument TypeError: Bad Argument TypeError: Bad Ar 
gument Ty
 

Mupad [B] (verification not implemented)

Time = 22.34 (sec) , antiderivative size = 2225, normalized size of antiderivative = 14.64 \[ \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Too large to display} \] Input:

int(tan(c + d*x)^(1/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2), 
x)
 

Output:

- ((B*tan(c + d*x)^(3/2)*2i)/(d*((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^ 
3) + (2*B*tan(c + d*x)^(1/2))/(a*d*((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2 
))))/(tan(c + d*x)^2/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^4 - 1/a^2 + 
 (tan(c + d*x)*2i)/(a*((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^2)) - ((-a 
)^(1/2)*atan((A^4*(-a)^(21/2)*tan(c + d*x)^(1/2)*(7168 - 7168i))/(((a + a* 
tan(c + d*x)*1i)^(1/2) - a^(1/2))*(A^4*a^10*3584i + B^4*a^10*512i - 4096*A 
*B^3*a^10 + 10240*A^3*B*a^10 - A^2*B^2*a^10*10240i - (3584*A^4*a^11*tan(c 
+ d*x))/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^2 - (512*B^4*a^11*tan(c 
+ d*x))/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^2 + (10240*A^2*B^2*a^11* 
tan(c + d*x))/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^2 - (A*B^3*a^11*ta 
n(c + d*x)*4096i)/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^2 + (A^3*B*a^1 
1*tan(c + d*x)*10240i)/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^2)) + (B^ 
4*(-a)^(21/2)*tan(c + d*x)^(1/2)*(1024 - 1024i))/(((a + a*tan(c + d*x)*1i) 
^(1/2) - a^(1/2))*(A^4*a^10*3584i + B^4*a^10*512i - 4096*A*B^3*a^10 + 1024 
0*A^3*B*a^10 - A^2*B^2*a^10*10240i - (3584*A^4*a^11*tan(c + d*x))/((a + a* 
tan(c + d*x)*1i)^(1/2) - a^(1/2))^2 - (512*B^4*a^11*tan(c + d*x))/((a + a* 
tan(c + d*x)*1i)^(1/2) - a^(1/2))^2 + (10240*A^2*B^2*a^11*tan(c + d*x))/(( 
a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^2 - (A*B^3*a^11*tan(c + d*x)*4096i 
)/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^2 + (A^3*B*a^11*tan(c + d*x)*1 
0240i)/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^2)) + (A*B^3*(-a)^(21/...
 

Reduce [F]

\[ \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {\sqrt {a}\, \left (-2 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, a i +\left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\tan \left (d x +c \right )}d x \right ) a d i +2 \left (\int \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )d x \right ) a d i +\left (\int \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )d x \right ) b d \right )}{d} \] Input:

int(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)
 

Output:

(sqrt(a)*( - 2*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*a*i + int((sqrt 
(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1))/tan(c + d*x),x)*a*d*i + 2*int(sqr 
t(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x),x)*a*d*i + int(sqrt( 
tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x),x)*b*d))/d