\(\int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx\) [170]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 38, antiderivative size = 252 \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=-\frac {(-1)^{3/4} a^{5/2} (46 A-45 i B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{8 d}-\frac {(4+4 i) a^{5/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a^2 (18 i A+19 B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{8 d}-\frac {a^2 (2 A-3 i B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d} \] Output:

-1/8*(-1)^(3/4)*a^(5/2)*(46*A-45*I*B)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c) 
^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d-(4+4*I)*a^(5/2)*(A-I*B)*arctanh((1+I)*a 
^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+1/8*a^2*(18*I*A+19*B)* 
tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/d-1/4*a^2*(2*A-3*I*B)*tan(d*x+c) 
^(3/2)*(a+I*a*tan(d*x+c))^(1/2)/d+1/3*I*a*B*tan(d*x+c)^(3/2)*(a+I*a*tan(d* 
x+c))^(3/2)/d
 

Mathematica [A] (verified)

Time = 6.60 (sec) , antiderivative size = 503, normalized size of antiderivative = 2.00 \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\frac {B \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}}{3 d}+\frac {\frac {i a^3 (6 A-5 i B) \sqrt {a+i a \tan (c+d x)} \left (-\frac {3}{4} (-1)^{3/4} \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right )+\frac {5}{4} \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}+\frac {1}{2} i \sqrt {1+i \tan (c+d x)} \tan ^{\frac {3}{2}}(c+d x)\right )}{2 d \sqrt {1+i \tan (c+d x)}}+\frac {a \left (\frac {1}{2} a^2 (6 A-5 i B)-\frac {1}{2} i a^2 B\right ) \left (-\frac {4 i \sqrt {2} a \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{\sqrt {i a \tan (c+d x)}}+\frac {4 i a^{3/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+i \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}+\frac {i \sqrt {a} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{\sqrt {1+i \tan (c+d x)} \sqrt {i a \tan (c+d x)}}\right )}{d}}{3 a} \] Input:

Integrate[Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d 
*x]),x]
 

Output:

(B*Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2))/(3*d) + (((I/2)*a^3*(6 
*A - (5*I)*B)*Sqrt[a + I*a*Tan[c + d*x]]*((-3*(-1)^(3/4)*ArcSinh[(-1)^(1/4 
)*Sqrt[Tan[c + d*x]]])/4 + (5*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[Tan[c + d*x]]) 
/4 + (I/2)*Sqrt[1 + I*Tan[c + d*x]]*Tan[c + d*x]^(3/2)))/(d*Sqrt[1 + I*Tan 
[c + d*x]]) + (a*((a^2*(6*A - (5*I)*B))/2 - (I/2)*a^2*B)*(((-4*I)*Sqrt[2]* 
a*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqr 
t[Tan[c + d*x]])/Sqrt[I*a*Tan[c + d*x]] + ((4*I)*a^(3/2)*ArcSinh[Sqrt[I*a* 
Tan[c + d*x]]/Sqrt[a]]*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[Tan[c + d*x]])/(Sqrt[ 
I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) + I*Sqrt[Tan[c + d*x]]*Sqrt[ 
a + I*a*Tan[c + d*x]] + (I*Sqrt[a]*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]] 
*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[1 + I*Tan[c + d*x]]* 
Sqrt[I*a*Tan[c + d*x]])))/d)/(3*a)
 

Rubi [A] (verified)

Time = 1.66 (sec) , antiderivative size = 265, normalized size of antiderivative = 1.05, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.447, Rules used = {3042, 4077, 27, 3042, 4077, 27, 3042, 4080, 27, 3042, 4084, 3042, 4027, 218, 4082, 65, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 4077

\(\displaystyle \frac {1}{3} \int \frac {3}{2} \sqrt {\tan (c+d x)} (i \tan (c+d x) a+a)^{3/2} (a (2 A-i B)+a (2 i A+3 B) \tan (c+d x))dx+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \int \sqrt {\tan (c+d x)} (i \tan (c+d x) a+a)^{3/2} (a (2 A-i B)+a (2 i A+3 B) \tan (c+d x))dx+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \sqrt {\tan (c+d x)} (i \tan (c+d x) a+a)^{3/2} (a (2 A-i B)+a (2 i A+3 B) \tan (c+d x))dx+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 4077

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \int \frac {1}{2} \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} \left ((14 A-13 i B) a^2+(18 i A+19 B) \tan (c+d x) a^2\right )dx-\frac {a^2 (2 A-3 i B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \int \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} \left ((14 A-13 i B) a^2+(18 i A+19 B) \tan (c+d x) a^2\right )dx-\frac {a^2 (2 A-3 i B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \int \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} \left ((14 A-13 i B) a^2+(18 i A+19 B) \tan (c+d x) a^2\right )dx-\frac {a^2 (2 A-3 i B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 4080

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (\frac {\int -\frac {\sqrt {i \tan (c+d x) a+a} \left (a^3 (18 i A+19 B)-a^3 (46 A-45 i B) \tan (c+d x)\right )}{2 \sqrt {\tan (c+d x)}}dx}{a}+\frac {a^2 (19 B+18 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}\right )-\frac {a^2 (2 A-3 i B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (\frac {a^2 (19 B+18 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (a^3 (18 i A+19 B)-a^3 (46 A-45 i B) \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )-\frac {a^2 (2 A-3 i B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (\frac {a^2 (19 B+18 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (a^3 (18 i A+19 B)-a^3 (46 A-45 i B) \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )-\frac {a^2 (2 A-3 i B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 4084

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (\frac {a^2 (19 B+18 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {64 a^3 (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-a^2 (45 B+46 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )-\frac {a^2 (2 A-3 i B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (\frac {a^2 (19 B+18 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {64 a^3 (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-a^2 (45 B+46 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )-\frac {a^2 (2 A-3 i B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (\frac {a^2 (19 B+18 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {-a^2 (45 B+46 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {128 i a^5 (B+i A) \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}}{2 a}\right )-\frac {a^2 (2 A-3 i B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (\frac {a^2 (19 B+18 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(64-64 i) a^{7/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-a^2 (45 B+46 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )-\frac {a^2 (2 A-3 i B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 4082

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (\frac {a^2 (19 B+18 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(64-64 i) a^{7/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {a^4 (45 B+46 i A) \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}d\tan (c+d x)}{d}}{2 a}\right )-\frac {a^2 (2 A-3 i B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 65

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (\frac {a^2 (19 B+18 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(64-64 i) a^{7/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^4 (45 B+46 i A) \int \frac {1}{1-\frac {i a \tan (c+d x)}{i \tan (c+d x) a+a}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}}{2 a}\right )-\frac {a^2 (2 A-3 i B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (\frac {a^2 (19 B+18 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {2 \sqrt [4]{-1} a^{7/2} (45 B+46 i A) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(64-64 i) a^{7/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{2 a}\right )-\frac {a^2 (2 A-3 i B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}\right )+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\)

Input:

Int[Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]),x 
]
 

Output:

((I/3)*a*B*Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(3/2))/d + (-1/2*(a^2 
*(2*A - (3*I)*B)*Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/d + (-1/2* 
((2*(-1)^(1/4)*a^(7/2)*((46*I)*A + 45*B)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[T 
an[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + ((64 - 64*I)*a^(7/2)*(I*A + 
 B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x] 
]])/d)/a + (a^2*((18*I)*A + 19*B)*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + 
d*x]])/d)/4)/2
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4077
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + 
n))), x] + Simp[1/(d*(m + n))   Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan 
[e + f*x])^n*Simp[a*A*d*(m + n) + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - 
 a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && 
GtQ[m, 1] &&  !LtQ[n, -1]
 

rule 4080
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] + Simp[ 
1/(a*(m + n))   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Sim 
p[a*A*c*(m + n) - B*(b*c*m + a*d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*T 
an[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c 
 - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]
 

rule 4082
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(B/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x]], 
x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 + b^2, 0] && EqQ[A*b + a*B, 0]
 

rule 4084
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b + a*B)/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x], x] 
 - Simp[B/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[ 
e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - 
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 652 vs. \(2 (202 ) = 404\).

Time = 0.28 (sec) , antiderivative size = 653, normalized size of antiderivative = 2.59

method result size
derivativedivides \(-\frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (16 B \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{2}-52 i B \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+54 i A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}-108 i A \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+24 A \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )-48 i \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +57 B \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a -114 B \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+96 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -48 \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -96 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\right )}{48 d \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}}\) \(653\)
default \(-\frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (16 B \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{2}-52 i B \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+54 i A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}-108 i A \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+24 A \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )-48 i \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +57 B \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a -114 B \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+96 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -48 \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -96 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\right )}{48 d \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}}\) \(653\)
parts \(\frac {A \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (8 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +18 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}-4 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )+23 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a +8 \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +32 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\right )}{8 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}-\frac {B \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (48 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a -52 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )+16 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{2}+192 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -48 \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a -135 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}-114 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{48 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(855\)

Input:

int(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x,method=_R 
ETURNVERBOSE)
 

Output:

-1/48/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*a^2*(16*B*(-I*a)^(1/2) 
*(I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^2-52*I*B*(-I 
*a)^(1/2)*(I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+54* 
I*A*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)) 
)^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a-108*I*A*(-I*a)^(1/2)*(I*a)^(1/2)*(a* 
tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+24*A*(-I*a)^(1/2)*(I*a)^(1/2)*(a*tan(d* 
x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)-48*I*ln(-(-2*2^(1/2)*(-I*a)^(1/2)* 
(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))* 
(I*a)^(1/2)*2^(1/2)*a+57*B*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan( 
d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a-114*B*(-I*a)^ 
(1/2)*(I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+96*I*(-I*a)^(1/2)* 
ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/ 
2)+a)/(I*a)^(1/2))*a-48*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*( 
a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a 
-96*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a) 
^(1/2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2))/(-I*a)^(1/2)/(I*a)^(1/2)/(a*tan(d*x 
+c)*(1+I*tan(d*x+c)))^(1/2)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 932 vs. \(2 (188) = 376\).

Time = 0.14 (sec) , antiderivative size = 932, normalized size of antiderivative = 3.70 \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\text {Too large to display} \] Input:

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, al 
gorithm="fricas")
 

Output:

1/48*(96*sqrt(2)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^5/d^2)*(d*e^(4*I*d*x + 4 
*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)*log((sqrt(2)*sqrt(-(-I*A^2 - 2*A*B + 
I*B^2)*a^5/d^2)*d*e^(I*d*x + I*c) + sqrt(2)*((-I*A - B)*a^2*e^(2*I*d*x + 2 
*I*c) + (-I*A - B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I* 
d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/((-I*A - B) 
*a^2)) - 96*sqrt(2)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^5/d^2)*(d*e^(4*I*d*x 
+ 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)*log(-(sqrt(2)*sqrt(-(-I*A^2 - 2*A* 
B + I*B^2)*a^5/d^2)*d*e^(I*d*x + I*c) - sqrt(2)*((-I*A - B)*a^2*e^(2*I*d*x 
 + 2*I*c) + (-I*A - B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^( 
2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/((-I*A 
- B)*a^2)) + 2*sqrt(2)*((66*I*A + 91*B)*a^2*e^(5*I*d*x + 5*I*c) - 2*(-54*I 
*A - 49*B)*a^2*e^(3*I*d*x + 3*I*c) - 3*(-14*I*A - 13*B)*a^2*e^(I*d*x + I*c 
))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^ 
(2*I*d*x + 2*I*c) + 1)) + 3*sqrt((2116*I*A^2 + 4140*A*B - 2025*I*B^2)*a^5/ 
d^2)*(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)*log((sqrt(2)*(( 
46*I*A + 45*B)*a^2*e^(2*I*d*x + 2*I*c) + (46*I*A + 45*B)*a^2)*sqrt(a/(e^(2 
*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I* 
c) + 1)) + 2*sqrt((2116*I*A^2 + 4140*A*B - 2025*I*B^2)*a^5/d^2)*d*e^(I*d*x 
 + I*c))*e^(-I*d*x - I*c)/((46*I*A + 45*B)*a^2)) - 3*sqrt((2116*I*A^2 + 41 
40*A*B - 2025*I*B^2)*a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x +...
 

Sympy [F(-1)]

Timed out. \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(tan(d*x+c)**(1/2)*(a+I*a*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\tan \left (d x + c\right )} \,d x } \] Input:

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, al 
gorithm="maxima")
 

Output:

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^(5/2)*sqrt(tan(d*x + 
 c)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\text {Exception raised: TypeError} \] Input:

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, al 
gorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeWarning, need to choose a branch for the root of a polynomial 
 with par
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\int \sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2} \,d x \] Input:

int(tan(c + d*x)^(1/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(5/2), 
x)
 

Output:

int(tan(c + d*x)^(1/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(5/2), 
 x)
 

Reduce [F]

\[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\frac {\sqrt {a}\, a^{2} \left (-2 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, a i +\left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\tan \left (d x +c \right )}d x \right ) a d i -\left (\int \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )^{3}d x \right ) b d -\left (\int \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )^{2}d x \right ) a d +2 \left (\int \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )^{2}d x \right ) b d i +4 \left (\int \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )d x \right ) a d i +\left (\int \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )d x \right ) b d \right )}{d} \] Input:

int(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x)
 

Output:

(sqrt(a)*a**2*( - 2*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*a*i + int( 
(sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1))/tan(c + d*x),x)*a*d*i - int( 
sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x)**3,x)*b*d - int(s 
qrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x)**2,x)*a*d + 2*int( 
sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x)**2,x)*b*d*i + 4*i 
nt(sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x),x)*a*d*i + int 
(sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*tan(c + d*x),x)*b*d))/d