\(\int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\) [172]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-1)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 38, antiderivative size = 196 \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {(-1)^{3/4} a^{5/2} (2 A-5 i B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(4+4 i) a^{5/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a^2 (2 i A-B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}} \] Output:

(-1)^(3/4)*a^(5/2)*(2*A-5*I*B)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/ 
(a+I*a*tan(d*x+c))^(1/2))/d+(4+4*I)*a^(5/2)*(A-I*B)*arctanh((1+I)*a^(1/2)* 
tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+a^2*(2*I*A-B)*tan(d*x+c)^(1/2 
)*(a+I*a*tan(d*x+c))^(1/2)/d-2*a*A*(a+I*a*tan(d*x+c))^(3/2)/d/tan(d*x+c)^( 
1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 5.28 (sec) , antiderivative size = 288, normalized size of antiderivative = 1.47 \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {i a^2 \left (-3 \sqrt [4]{-1} a A \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {\tan (c+d x)} (-i+\tan (c+d x))+5 \sqrt {a} (A-i B) \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {i a \tan (c+d x)} (-i+\tan (c+d x))+\sqrt {1+i \tan (c+d x)} \left (4 \sqrt {2} (i A+B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}+a (-i+\tan (c+d x)) (2 A+B \tan (c+d x))\right )\right )}{d \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \] Input:

Integrate[((a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x] 
^(3/2),x]
 

Output:

((-I)*a^2*(-3*(-1)^(1/4)*a*A*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*Sqrt[T 
an[c + d*x]]*(-I + Tan[c + d*x]) + 5*Sqrt[a]*(A - I*B)*ArcSinh[Sqrt[I*a*Ta 
n[c + d*x]]/Sqrt[a]]*Sqrt[I*a*Tan[c + d*x]]*(-I + Tan[c + d*x]) + Sqrt[1 + 
 I*Tan[c + d*x]]*(4*Sqrt[2]*(I*A + B)*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d* 
x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c 
 + d*x]] + a*(-I + Tan[c + d*x])*(2*A + B*Tan[c + d*x]))))/(d*Sqrt[1 + I*T 
an[c + d*x]]*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])
 

Rubi [A] (verified)

Time = 1.27 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.03, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {3042, 4076, 27, 3042, 4077, 27, 3042, 4084, 3042, 4027, 218, 4082, 65, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan (c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 4076

\(\displaystyle 2 \int \frac {(i \tan (c+d x) a+a)^{3/2} (a (4 i A+B)+a (2 A+i B) \tan (c+d x))}{2 \sqrt {\tan (c+d x)}}dx-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {(i \tan (c+d x) a+a)^{3/2} (a (4 i A+B)+a (2 A+i B) \tan (c+d x))}{\sqrt {\tan (c+d x)}}dx-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(i \tan (c+d x) a+a)^{3/2} (a (4 i A+B)+a (2 A+i B) \tan (c+d x))}{\sqrt {\tan (c+d x)}}dx-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 4077

\(\displaystyle \int \frac {\sqrt {i \tan (c+d x) a+a} \left (3 a^2 (2 i A+B)-a^2 (2 A-5 i B) \tan (c+d x)\right )}{2 \sqrt {\tan (c+d x)}}dx+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \int \frac {\sqrt {i \tan (c+d x) a+a} \left (3 a^2 (2 i A+B)-a^2 (2 A-5 i B) \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {\sqrt {i \tan (c+d x) a+a} \left (3 a^2 (2 i A+B)-a^2 (2 A-5 i B) \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 4084

\(\displaystyle \frac {1}{2} \left (8 a^2 (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-a (5 B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx\right )+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (8 a^2 (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-a (5 B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx\right )+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {1}{2} \left (-\frac {16 i a^4 (B+i A) \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-a (5 B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx\right )+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {1}{2} \left (\frac {(8-8 i) a^{5/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-a (5 B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx\right )+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 4082

\(\displaystyle \frac {1}{2} \left (\frac {(8-8 i) a^{5/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {a^3 (5 B+2 i A) \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}d\tan (c+d x)}{d}\right )+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 65

\(\displaystyle \frac {1}{2} \left (\frac {(8-8 i) a^{5/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^3 (5 B+2 i A) \int \frac {1}{1-\frac {i a \tan (c+d x)}{i \tan (c+d x) a+a}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}\right )+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{2} \left (\frac {2 \sqrt [4]{-1} a^{5/2} (5 B+2 i A) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(8-8 i) a^{5/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\right )+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\)

Input:

Int[((a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(3/2) 
,x]
 

Output:

((2*(-1)^(1/4)*a^(5/2)*((2*I)*A + 5*B)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan 
[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + ((8 - 8*I)*a^(5/2)*(I*A + B)* 
ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/ 
d)/2 + (a^2*((2*I)*A - B)*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d 
 - (2*a*A*(a + I*a*Tan[c + d*x])^(3/2))/(d*Sqrt[Tan[c + d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4076
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-a^2)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n 
+ 1)/(d*f*(b*c + a*d)*(n + 1))), x] - Simp[a/(d*(b*c + a*d)*(n + 1))   Int[ 
(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n 
 - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m - 1) + b 
*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] 
 && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]
 

rule 4077
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + 
n))), x] + Simp[1/(d*(m + n))   Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan 
[e + f*x])^n*Simp[a*A*d*(m + n) + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - 
 a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && 
GtQ[m, 1] &&  !LtQ[n, -1]
 

rule 4082
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(B/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x]], 
x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 + b^2, 0] && EqQ[A*b + a*B, 0]
 

rule 4084
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b + a*B)/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x], x] 
 - Simp[B/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[ 
e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - 
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 564 vs. \(2 (161 ) = 322\).

Time = 0.21 (sec) , antiderivative size = 565, normalized size of antiderivative = 2.88

method result size
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (6 i A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 i \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+3 B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+4 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\, \tan \left (d x +c \right )-2 \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-4 A \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}-4 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )\right )}{2 d \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(565\)
default \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (6 i A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 i \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+3 B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+4 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\, \tan \left (d x +c \right )-2 \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-4 A \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}-4 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )\right )}{2 d \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(565\)
parts \(\frac {A \left (-i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right ) a -i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\, \tan \left (d x +c \right )-\sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right ) a -4 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2}}{d \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}+\frac {B \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {\tan \left (d x +c \right )}\, a^{2} \left (2 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a -2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}-5 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}-2 \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +8 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \right )}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(751\)

Input:

int((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x,method=_R 
ETURNVERBOSE)
 

Output:

1/2/d*(a*(1+I*tan(d*x+c)))^(1/2)*a^2*(6*I*A*ln(1/2*(2*I*a*tan(d*x+c)+2*(a* 
tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2 
)*a*tan(d*x+c)-2*I*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan 
(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan( 
d*x+c)+3*B*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2 
)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)-2*B*(I*a)^(1/2)*(- 
I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+4*I*ln(1/2*(2* 
I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a 
)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)-2*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*( 
-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan 
(d*x+c)+I))*a*tan(d*x+c)-4*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^( 
1/2)*(-I*a)^(1/2)-4*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+ 
c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c))/tan(d*x+ 
c)^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 857 vs. \(2 (150) = 300\).

Time = 0.10 (sec) , antiderivative size = 857, normalized size of antiderivative = 4.37 \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, al 
gorithm="fricas")
 

Output:

-1/2*(4*sqrt(2)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^5/d^2)*(d*e^(2*I*d*x + 2* 
I*c) - d)*log((sqrt(2)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^5/d^2)*d*e^(I*d*x 
+ I*c) + sqrt(2)*((-I*A - B)*a^2*e^(2*I*d*x + 2*I*c) + (-I*A - B)*a^2)*sqr 
t(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d 
*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/((-I*A - B)*a^2)) - 4*sqrt(2)*sqrt(-(- 
I*A^2 - 2*A*B + I*B^2)*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log(-(sqrt(2)* 
sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^5/d^2)*d*e^(I*d*x + I*c) - sqrt(2)*((-I*A 
 - B)*a^2*e^(2*I*d*x + 2*I*c) + (-I*A - B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c 
) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(- 
I*d*x - I*c)/((-I*A - B)*a^2)) + 2*sqrt(2)*((2*I*A + B)*a^2*e^(3*I*d*x + 3 
*I*c) + (2*I*A - B)*a^2*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)) 
*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + sqrt((4*I* 
A^2 + 20*A*B - 25*I*B^2)*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2) 
*((2*I*A + 5*B)*a^2*e^(2*I*d*x + 2*I*c) + (2*I*A + 5*B)*a^2)*sqrt(a/(e^(2* 
I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c 
) + 1)) + 2*sqrt((4*I*A^2 + 20*A*B - 25*I*B^2)*a^5/d^2)*d*e^(I*d*x + I*c)) 
*e^(-I*d*x - I*c)/((2*I*A + 5*B)*a^2)) - sqrt((4*I*A^2 + 20*A*B - 25*I*B^2 
)*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*((2*I*A + 5*B)*a^2*e^( 
2*I*d*x + 2*I*c) + (2*I*A + 5*B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sq 
rt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - 2*sqrt((4*...
 

Sympy [F]

\[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}} \left (A + B \tan {\left (c + d x \right )}\right )}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((a+I*a*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(3/2),x)
 

Output:

Integral((I*a*(tan(c + d*x) - I))**(5/2)*(A + B*tan(c + d*x))/tan(c + d*x) 
**(3/2), x)
 

Maxima [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, al 
gorithm="maxima")
 

Output:

Timed out
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, al 
gorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeWarning, need to choose a branch for the root of a polynomial 
 with par
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{{\mathrm {tan}\left (c+d\,x\right )}^{3/2}} \,d x \] Input:

int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(5/2))/tan(c + d*x)^(3/2 
),x)
 

Output:

int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(5/2))/tan(c + d*x)^(3/2 
), x)
 

Reduce [F]

\[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {a}\, a^{2} \left (2 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, a i +4 \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, b +\left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\tan \left (d x +c \right )^{2}}d x \right ) a d +\left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\tan \left (d x +c \right )}d x \right ) a d i -\left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}}{\tan \left (d x +c \right )}d x \right ) b d -2 \left (\int \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )d x \right ) a d i -5 \left (\int \sqrt {\tan \left (d x +c \right )}\, \sqrt {\tan \left (d x +c \right ) i +1}\, \tan \left (d x +c \right )d x \right ) b d \right )}{d} \] Input:

int((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x)
 

Output:

(sqrt(a)*a**2*(2*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*a*i + 4*sqrt( 
tan(c + d*x))*sqrt(tan(c + d*x)*i + 1)*b + int((sqrt(tan(c + d*x))*sqrt(ta 
n(c + d*x)*i + 1))/tan(c + d*x)**2,x)*a*d + int((sqrt(tan(c + d*x))*sqrt(t 
an(c + d*x)*i + 1))/tan(c + d*x),x)*a*d*i - int((sqrt(tan(c + d*x))*sqrt(t 
an(c + d*x)*i + 1))/tan(c + d*x),x)*b*d - 2*int(sqrt(tan(c + d*x))*sqrt(ta 
n(c + d*x)*i + 1)*tan(c + d*x),x)*a*d*i - 5*int(sqrt(tan(c + d*x))*sqrt(ta 
n(c + d*x)*i + 1)*tan(c + d*x),x)*b*d))/d