\(\int \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx\) [320]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 122 \[ \int \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {\sqrt {a-i b} (i A+B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {\sqrt {a+i b} (i A-B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}+\frac {2 B \sqrt {a+b \tan (c+d x)}}{d} \] Output:

-(a-I*b)^(1/2)*(I*A+B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/d+(a+ 
I*b)^(1/2)*(I*A-B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2))/d+2*B*(a+ 
b*tan(d*x+c))^(1/2)/d
 

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.98 \[ \int \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {-i \sqrt {a-i b} (A-i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )+i \sqrt {a+i b} (A+i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )+2 B \sqrt {a+b \tan (c+d x)}}{d} \] Input:

Integrate[Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]
 

Output:

((-I)*Sqrt[a - I*b]*(A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I* 
b]] + I*Sqrt[a + I*b]*(A + I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + 
I*b]] + 2*B*Sqrt[a + b*Tan[c + d*x]])/d
 

Rubi [A] (warning: unable to verify)

Time = 0.59 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.84, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 4011, 3042, 4022, 3042, 4020, 25, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 4011

\(\displaystyle \int \frac {a A-b B+(A b+a B) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {2 B \sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a A-b B+(A b+a B) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {2 B \sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 4022

\(\displaystyle \frac {1}{2} (a+i b) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} (a-i b) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx+\frac {2 B \sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} (a+i b) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} (a-i b) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx+\frac {2 B \sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 4020

\(\displaystyle \frac {i (a-i b) (A-i B) \int -\frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}-\frac {i (a+i b) (A+i B) \int -\frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}+\frac {2 B \sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {i (a-i b) (A-i B) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}+\frac {i (a+i b) (A+i B) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}+\frac {2 B \sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {(a+i b) (A+i B) \int \frac {1}{-\frac {i \tan ^2(c+d x)}{b}-\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}+\frac {(a-i b) (A-i B) \int \frac {1}{\frac {i \tan ^2(c+d x)}{b}+\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}+\frac {2 B \sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\sqrt {a-i b} (A-i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d}+\frac {\sqrt {a+i b} (A+i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d}+\frac {2 B \sqrt {a+b \tan (c+d x)}}{d}\)

Input:

Int[Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]
 

Output:

(Sqrt[a - I*b]*(A - I*B)*ArcTan[Tan[c + d*x]/Sqrt[a - I*b]])/d + (Sqrt[a + 
 I*b]*(A + I*B)*ArcTan[Tan[c + d*x]/Sqrt[a + I*b]])/d + (2*B*Sqrt[a + b*Ta 
n[c + d*x]])/d
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4011
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Int 
[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 
 0] && GtQ[m, 0]
 

rule 4020
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[c*(d/f)   Subst[Int[(a + (b/d)*x)^m/(d^2 + 
c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
 

rule 4022
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(c + I*d)/2   Int[(a + b*Tan[e + f*x])^m*( 
1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2   Int[(a + b*Tan[e + f*x])^m 
*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c 
 - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(811\) vs. \(2(102)=204\).

Time = 0.12 (sec) , antiderivative size = 812, normalized size of antiderivative = 6.66

method result size
parts \(-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d b}-\frac {b \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d b}+\frac {b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {B \left (2 \sqrt {a +b \tan \left (d x +c \right )}+\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right )}{4}+\frac {\left (-a +\sqrt {a^{2}+b^{2}}\right ) \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right )}{4}+\frac {\left (a -\sqrt {a^{2}+b^{2}}\right ) \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d}\) \(812\)
derivativedivides \(\frac {2 B \sqrt {a +b \tan \left (d x +c \right )}}{d}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d b}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) B \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}-\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (b \tan \left (d x +c \right )+a -\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d b}-\frac {\ln \left (b \tan \left (d x +c \right )+a -\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}+\frac {\ln \left (b \tan \left (d x +c \right )+a -\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) B \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}-\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}-\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}-\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}-\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\) \(961\)
default \(\frac {2 B \sqrt {a +b \tan \left (d x +c \right )}}{d}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d b}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) B \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}-\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (b \tan \left (d x +c \right )+a -\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d b}-\frac {\ln \left (b \tan \left (d x +c \right )+a -\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}+\frac {\ln \left (b \tan \left (d x +c \right )+a -\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) B \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}-\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}-\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}-\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}-\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\) \(961\)

Input:

int((a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

-1/4/d/b*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x 
+c)-a-(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/4/d/b*ln((a+b*t 
an(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1 
/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)-1/d*b/(2*(a^2+b^2)^(1 
/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1 
/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A+1/4/d/b*ln(b*tan(d*x+c)+a+(a+b*tan(d 
*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*A*(2*(a^2+b^2) 
^(1/2)+2*a)^(1/2)*a-1/4/d/b*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a 
^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)* 
(a^2+b^2)^(1/2)+1/d*b/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x 
+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A 
+B/d*(2*(a+b*tan(d*x+c))^(1/2)+1/4*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*ln((a+b*t 
an(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1 
/2))+(-a+(a^2+b^2)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^ 
2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2 
))-1/4*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1 
/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))+(a-(a^2+b^2)^(1/2))/(2* 
(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^( 
1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1199 vs. \(2 (96) = 192\).

Time = 0.11 (sec) , antiderivative size = 1199, normalized size of antiderivative = 9.83 \[ \int \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Too large to display} \] Input:

integrate((a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")
 

Output:

-1/2*(d*sqrt((2*A*B*b + d^2*sqrt(-(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + 
 (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^2 - B^2)*a)/d^2)*log(-(2*(A^3*B + 
A*B^3)*a + (A^4 - B^4)*b)*sqrt(b*tan(d*x + c) + a) + (A*d^3*sqrt(-(4*A^2*B 
^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (2*A* 
B^2*a + (A^2*B - B^3)*b)*d)*sqrt((2*A*B*b + d^2*sqrt(-(4*A^2*B^2*a^2 + 4*( 
A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^2 - B^2)*a)/d^ 
2)) - d*sqrt((2*A*B*b + d^2*sqrt(-(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + 
 (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^2 - B^2)*a)/d^2)*log(-(2*(A^3*B + 
A*B^3)*a + (A^4 - B^4)*b)*sqrt(b*tan(d*x + c) + a) - (A*d^3*sqrt(-(4*A^2*B 
^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (2*A* 
B^2*a + (A^2*B - B^3)*b)*d)*sqrt((2*A*B*b + d^2*sqrt(-(4*A^2*B^2*a^2 + 4*( 
A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^2 - B^2)*a)/d^ 
2)) - d*sqrt((2*A*B*b - d^2*sqrt(-(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + 
 (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^2 - B^2)*a)/d^2)*log(-(2*(A^3*B + 
A*B^3)*a + (A^4 - B^4)*b)*sqrt(b*tan(d*x + c) + a) + (A*d^3*sqrt(-(4*A^2*B 
^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) + (2*A* 
B^2*a + (A^2*B - B^3)*b)*d)*sqrt((2*A*B*b - d^2*sqrt(-(4*A^2*B^2*a^2 + 4*( 
A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^2 - B^2)*a)/d^ 
2)) + d*sqrt((2*A*B*b - d^2*sqrt(-(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + 
 (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^2 - B^2)*a)/d^2)*log(-(2*(A^3*B...
 

Sympy [F]

\[ \int \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int \left (A + B \tan {\left (c + d x \right )}\right ) \sqrt {a + b \tan {\left (c + d x \right )}}\, dx \] Input:

integrate((a+b*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)
 

Output:

Integral((A + B*tan(c + d*x))*sqrt(a + b*tan(c + d*x)), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(b-a>0)', see `assume?` for more 
details)Is
 

Giac [F(-2)]

Exception generated. \[ \int \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{%%%{1,[0,9,3]%%%}+%%%{4,[0,7,3]%%%}+%%%{6,[0,5,3]%%%}+%%%{ 
4,[0,3,3]
 

Mupad [B] (verification not implemented)

Time = 6.07 (sec) , antiderivative size = 845, normalized size of antiderivative = 6.93 \[ \int \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx =\text {Too large to display} \] Input:

int((A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(1/2),x)
 

Output:

2*atanh((32*B^2*b^4*((B^2*a)/(4*d^2) - (-B^4*b^2*d^4)^(1/2)/(4*d^4))^(1/2) 
*(a + b*tan(c + d*x))^(1/2))/((16*B*b^4*(-B^4*b^2*d^4)^(1/2))/d^3 + (16*B* 
a^2*b^2*(-B^4*b^2*d^4)^(1/2))/d^3) - (32*a*b^2*((B^2*a)/(4*d^2) - (-B^4*b^ 
2*d^4)^(1/2)/(4*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-B^4*b^2*d^4)^(1/2 
))/((16*B*b^4*(-B^4*b^2*d^4)^(1/2))/d + (16*B*a^2*b^2*(-B^4*b^2*d^4)^(1/2) 
)/d))*(-((-B^4*b^2*d^4)^(1/2) - B^2*a*d^2)/(4*d^4))^(1/2) - atanh((d^3*((1 
6*(A^2*b^4 - A^2*a^2*b^2)*(a + b*tan(c + d*x))^(1/2))/d^2 - (16*a*b^2*((-A 
^4*b^2*d^4)^(1/2) - A^2*a*d^2)*(a + b*tan(c + d*x))^(1/2))/d^4)*(((-A^4*b^ 
2*d^4)^(1/2) - A^2*a*d^2)/d^4)^(1/2))/(16*(A^3*b^5 + A^3*a^2*b^3)))*(((-A^ 
4*b^2*d^4)^(1/2) - A^2*a*d^2)/d^4)^(1/2) - 2*atanh((32*B^2*b^4*((-B^4*b^2* 
d^4)^(1/2)/(4*d^4) + (B^2*a)/(4*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2))/(( 
16*B*b^4*(-B^4*b^2*d^4)^(1/2))/d^3 + (16*B*a^2*b^2*(-B^4*b^2*d^4)^(1/2))/d 
^3) + (32*a*b^2*((-B^4*b^2*d^4)^(1/2)/(4*d^4) + (B^2*a)/(4*d^2))^(1/2)*(a 
+ b*tan(c + d*x))^(1/2)*(-B^4*b^2*d^4)^(1/2))/((16*B*b^4*(-B^4*b^2*d^4)^(1 
/2))/d + (16*B*a^2*b^2*(-B^4*b^2*d^4)^(1/2))/d))*(((-B^4*b^2*d^4)^(1/2) + 
B^2*a*d^2)/(4*d^4))^(1/2) - atanh((d^3*((16*(A^2*b^4 - A^2*a^2*b^2)*(a + b 
*tan(c + d*x))^(1/2))/d^2 + (16*a*b^2*((-A^4*b^2*d^4)^(1/2) + A^2*a*d^2)*( 
a + b*tan(c + d*x))^(1/2))/d^4)*(-((-A^4*b^2*d^4)^(1/2) + A^2*a*d^2)/d^4)^ 
(1/2))/(16*(A^3*b^5 + A^3*a^2*b^3)))*(-((-A^4*b^2*d^4)^(1/2) + A^2*a*d^2)/ 
d^4)^(1/2) + (2*B*(a + b*tan(c + d*x))^(1/2))/d
 

Reduce [F]

\[ \int \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\left (\int \sqrt {a +\tan \left (d x +c \right ) b}d x \right ) a +\left (\int \sqrt {a +\tan \left (d x +c \right ) b}\, \tan \left (d x +c \right )d x \right ) b \] Input:

int((a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)
 

Output:

int(sqrt(tan(c + d*x)*b + a),x)*a + int(sqrt(tan(c + d*x)*b + a)*tan(c + d 
*x),x)*b