\(\int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx\) [351]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-1)]
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 167 \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {(i A+B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{3/2} d}-\frac {(i A-B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{3/2} d}-\frac {2 a^2 (A b-a B)}{b^2 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {2 B \sqrt {a+b \tan (c+d x)}}{b^2 d} \] Output:

(I*A+B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/(a-I*b)^(3/2)/d-(I*A 
-B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2))/(a+I*b)^(3/2)/d-2*a^2*(A 
*b-B*a)/b^2/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)+2*B*(a+b*tan(d*x+c))^(1/2)/ 
b^2/d
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.91 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.49 \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {i B \left (\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b}}-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b}}\right )+\frac {-2 A b+4 a B}{b \sqrt {a+b \tan (c+d x)}}+\frac {(A b-a B) \left ((-i a+b) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {a+b \tan (c+d x)}{a-i b}\right )+(i a+b) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {a+b \tan (c+d x)}{a+i b}\right )\right )}{\left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {2 B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}}{b d} \] Input:

Integrate[(Tan[c + d*x]^2*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(3/2) 
,x]
 

Output:

(I*B*(ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]]/Sqrt[a - I*b] - ArcT 
anh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]]/Sqrt[a + I*b]) + (-2*A*b + 4*a 
*B)/(b*Sqrt[a + b*Tan[c + d*x]]) + ((A*b - a*B)*(((-I)*a + b)*Hypergeometr 
ic2F1[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a - I*b)] + (I*a + b)*Hypergeome 
tric2F1[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a + I*b)]))/((a^2 + b^2)*Sqrt[ 
a + b*Tan[c + d*x]]) + (2*B*Tan[c + d*x])/Sqrt[a + b*Tan[c + d*x]])/(b*d)
 

Rubi [A] (warning: unable to verify)

Time = 0.99 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.11, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 4087, 25, 3042, 4113, 3042, 4022, 3042, 4020, 25, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (c+d x)^2 (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4087

\(\displaystyle \frac {\int -\frac {-\left (\left (a^2+b^2\right ) B \tan ^2(c+d x)\right )-b (A b-a B) \tan (c+d x)+a (A b-a B)}{\sqrt {a+b \tan (c+d x)}}dx}{b \left (a^2+b^2\right )}-\frac {2 a^2 (A b-a B)}{b^2 d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {-\left (\left (a^2+b^2\right ) B \tan ^2(c+d x)\right )-b (A b-a B) \tan (c+d x)+a (A b-a B)}{\sqrt {a+b \tan (c+d x)}}dx}{b \left (a^2+b^2\right )}-\frac {2 a^2 (A b-a B)}{b^2 d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {-\left (\left (a^2+b^2\right ) B \tan (c+d x)^2\right )-b (A b-a B) \tan (c+d x)+a (A b-a B)}{\sqrt {a+b \tan (c+d x)}}dx}{b \left (a^2+b^2\right )}-\frac {2 a^2 (A b-a B)}{b^2 d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 4113

\(\displaystyle -\frac {\int \frac {b (a A+b B)-b (A b-a B) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx-\frac {2 B \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}{b d}}{b \left (a^2+b^2\right )}-\frac {2 a^2 (A b-a B)}{b^2 d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {b (a A+b B)-b (A b-a B) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx-\frac {2 B \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}{b d}}{b \left (a^2+b^2\right )}-\frac {2 a^2 (A b-a B)}{b^2 d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 4022

\(\displaystyle -\frac {2 a^2 (A b-a B)}{b^2 d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {\frac {1}{2} b (a-i b) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} b (a+i b) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx-\frac {2 B \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}{b d}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 a^2 (A b-a B)}{b^2 d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {\frac {1}{2} b (a-i b) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} b (a+i b) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx-\frac {2 B \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}{b d}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 4020

\(\displaystyle -\frac {2 a^2 (A b-a B)}{b^2 d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {\frac {i b (a+i b) (A-i B) \int -\frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}-\frac {i b (a-i b) (A+i B) \int -\frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}-\frac {2 B \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}{b d}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 a^2 (A b-a B)}{b^2 d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {i b (a+i b) (A-i B) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}+\frac {i b (a-i b) (A+i B) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}-\frac {2 B \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}{b d}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {2 a^2 (A b-a B)}{b^2 d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {\frac {(a-i b) (A+i B) \int \frac {1}{-\frac {i \tan ^2(c+d x)}{b}-\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{d}+\frac {(a+i b) (A-i B) \int \frac {1}{\frac {i \tan ^2(c+d x)}{b}+\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{d}-\frac {2 B \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}{b d}}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {2 a^2 (A b-a B)}{b^2 d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {2 B \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}{b d}+\frac {b (a+i b) (A-i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}+\frac {b (a-i b) (A+i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}}{b \left (a^2+b^2\right )}\)

Input:

Int[(Tan[c + d*x]^2*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(3/2),x]
 

Output:

(-2*a^2*(A*b - a*B))/(b^2*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]]) - (((a + 
 I*b)*b*(A - I*B)*ArcTan[Tan[c + d*x]/Sqrt[a - I*b]])/(Sqrt[a - I*b]*d) + 
((a - I*b)*b*(A + I*B)*ArcTan[Tan[c + d*x]/Sqrt[a + I*b]])/(Sqrt[a + I*b]* 
d) - (2*(a^2 + b^2)*B*Sqrt[a + b*Tan[c + d*x]])/(b*d))/(b*(a^2 + b^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4020
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[c*(d/f)   Subst[Int[(a + (b/d)*x)^m/(d^2 + 
c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
 

rule 4022
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(c + I*d)/2   Int[(a + b*Tan[e + f*x])^m*( 
1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2   Int[(a + b*Tan[e + f*x])^m 
*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c 
 - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]
 

rule 4087
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*tan[(e_.) + (f 
_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[ 
(-(B*c - A*d))*(b*c - a*d)^2*((c + d*Tan[e + f*x])^(n + 1)/(f*d^2*(n + 1)*( 
c^2 + d^2))), x] + Simp[1/(d*(c^2 + d^2))   Int[(c + d*Tan[e + f*x])^(n + 1 
)*Simp[B*(b*c - a*d)^2 + A*d*(a^2*c - b^2*c + 2*a*b*d) + d*(B*(a^2*c - b^2* 
c + 2*a*b*d) + A*(2*a*b*c - a^2*d + b^2*d))*Tan[e + f*x] + b^2*B*(c^2 + d^2 
)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b 
*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1]
 

rule 4113
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + 
 b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])^m*Si 
mp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && 
NeQ[A*b^2 - a*b*B + a^2*C, 0] &&  !LeQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(3708\) vs. \(2(145)=290\).

Time = 0.16 (sec) , antiderivative size = 3709, normalized size of antiderivative = 22.21

method result size
parts \(\text {Expression too large to display}\) \(3709\)
derivativedivides \(\text {Expression too large to display}\) \(7982\)
default \(\text {Expression too large to display}\) \(7982\)

Input:

int(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x,method=_RETURNV 
ERBOSE)
 

Output:

A*(1/4/b/d/(a^2+b^2)^2*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^( 
1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3+1/4 
*b/d/(a^2+b^2)^2*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b 
*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/4/b/d/(a^ 
2+b^2)^(5/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan 
(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4+1/4*b^3/d/(a^ 
2+b^2)^(5/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan 
(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/b/d/(a^2+b^2)^( 
3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2 
*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3-b/d/(a^2+b^2)^ 
(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)- 
2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a-b/d/(a^2+b^2)^2 
/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+ 
b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+1/b/d/(a^2+b^2)^(5 
/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2* 
(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^5-b^3/d/(a^2+b^2) 
^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*( 
a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+3*b^3/d/(a^2+b^2)^(5 
/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2* 
(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a+4*b/d/(a^2+b^2...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4379 vs. \(2 (139) = 278\).

Time = 0.66 (sec) , antiderivative size = 4379, normalized size of antiderivative = 26.22 \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorith 
m="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \tan ^{2}{\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(tan(d*x+c)**2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(3/2),x)
 

Output:

Integral((A + B*tan(c + d*x))*tan(c + d*x)**2/(a + b*tan(c + d*x))**(3/2), 
 x)
 

Maxima [F(-1)]

Timed out. \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorith 
m="maxima")
 

Output:

Timed out
 

Giac [F(-1)]

Timed out. \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorith 
m="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 11.20 (sec) , antiderivative size = 5768, normalized size of antiderivative = 34.54 \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \] Input:

int((tan(c + d*x)^2*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(3/2),x)
 

Output:

(log((((a + b*tan(c + d*x))^(1/2)*(16*A^2*b^10*d^3 + 32*A^2*a^2*b^8*d^3 - 
32*A^2*a^6*b^4*d^3 - 16*A^2*a^8*b^2*d^3) + ((((96*A^4*a^2*b^4*d^4 - 16*A^4 
*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2)/ 
(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2)*(64*A*a*b^11*d^ 
4 - ((((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) - 
 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3* 
a^4*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^ 
10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2 
*d^5))/4 + 256*A*a^3*b^9*d^4 + 384*A*a^5*b^7*d^4 + 256*A*a^7*b^5*d^4 + 64* 
A*a^9*b^3*d^4))/4)*(((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^ 
2*d^4)^(1/2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^ 
2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 - 8*A^3*b^9*d^2 - 24*A^3*a^2*b^7*d^2 
- 24*A^3*a^4*b^5*d^2 - 8*A^3*a^6*b^3*d^2)*(((96*A^4*a^2*b^4*d^4 - 16*A^4*b 
^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2)/(a 
^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 + (log((((a + 
b*tan(c + d*x))^(1/2)*(16*A^2*b^10*d^3 + 32*A^2*a^2*b^8*d^3 - 32*A^2*a^6*b 
^4*d^3 - 16*A^2*a^8*b^2*d^3) + ((-((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 
144*A^4*a^4*b^2*d^4)^(1/2) + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d^2)/(a^6*d^4 + 
b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2)*(64*A*a*b^11*d^4 - ((-((96 
*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) + 4*A^2*...
 

Reduce [F]

\[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {a +\tan \left (d x +c \right ) b}\, \tan \left (d x +c \right )^{2}}{a +\tan \left (d x +c \right ) b}d x \] Input:

int(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x)
 

Output:

int((sqrt(tan(c + d*x)*b + a)*tan(c + d*x)**2)/(tan(c + d*x)*b + a),x)