\(\int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx\) [362]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 224 \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=-\frac {2 A \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{a^{5/2} d}+\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{5/2} d}+\frac {(A+i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{5/2} d}+\frac {2 b (A b-a B)}{3 a \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 b \left (3 a^2 A b+A b^3-2 a^3 B\right )}{a^2 \left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}} \] Output:

-2*A*arctanh((a+b*tan(d*x+c))^(1/2)/a^(1/2))/a^(5/2)/d+(A-I*B)*arctanh((a+ 
b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/(a-I*b)^(5/2)/d+(A+I*B)*arctanh((a+b*ta 
n(d*x+c))^(1/2)/(a+I*b)^(1/2))/(a+I*b)^(5/2)/d+2/3*b*(A*b-B*a)/a/(a^2+b^2) 
/d/(a+b*tan(d*x+c))^(3/2)+2*b*(3*A*a^2*b+A*b^3-2*B*a^3)/a^2/(a^2+b^2)^2/d/ 
(a+b*tan(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 3.51 (sec) , antiderivative size = 242, normalized size of antiderivative = 1.08 \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\frac {2 \left (-\frac {3 A \left (a^2+b^2\right ) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{a^{3/2}}+\frac {3 a (a+i b) (A-i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{2 (a-i b)^{3/2}}+\frac {3 a (a-i b) (A+i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{2 (a+i b)^{3/2}}+\frac {b (A b-a B)}{(a+b \tan (c+d x))^{3/2}}+\frac {3 b \left (3 a^2 A b+A b^3-2 a^3 B\right )}{a \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}\right )}{3 a \left (a^2+b^2\right ) d} \] Input:

Integrate[(Cot[c + d*x]*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(5/2),x 
]
 

Output:

(2*((-3*A*(a^2 + b^2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/a^(3/2) + 
 (3*a*(a + I*b)*(A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]]) 
/(2*(a - I*b)^(3/2)) + (3*a*(a - I*b)*(A + I*B)*ArcTanh[Sqrt[a + b*Tan[c + 
 d*x]]/Sqrt[a + I*b]])/(2*(a + I*b)^(3/2)) + (b*(A*b - a*B))/(a + b*Tan[c 
+ d*x])^(3/2) + (3*b*(3*a^2*A*b + A*b^3 - 2*a^3*B))/(a*(a^2 + b^2)*Sqrt[a 
+ b*Tan[c + d*x]])))/(3*a*(a^2 + b^2)*d)
 

Rubi [A] (warning: unable to verify)

Time = 1.95 (sec) , antiderivative size = 272, normalized size of antiderivative = 1.21, number of steps used = 20, number of rules used = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.613, Rules used = {3042, 4092, 27, 3042, 4132, 27, 3042, 4136, 25, 3042, 4022, 3042, 4020, 25, 73, 221, 4117, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\tan (c+d x) (a+b \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4092

\(\displaystyle \frac {2 \int \frac {3 \cot (c+d x) \left (b (A b-a B) \tan ^2(c+d x)-a (A b-a B) \tan (c+d x)+A \left (a^2+b^2\right )\right )}{2 (a+b \tan (c+d x))^{3/2}}dx}{3 a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\cot (c+d x) \left (b (A b-a B) \tan ^2(c+d x)-a (A b-a B) \tan (c+d x)+A \left (a^2+b^2\right )\right )}{(a+b \tan (c+d x))^{3/2}}dx}{a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {b (A b-a B) \tan (c+d x)^2-a (A b-a B) \tan (c+d x)+A \left (a^2+b^2\right )}{\tan (c+d x) (a+b \tan (c+d x))^{3/2}}dx}{a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4132

\(\displaystyle \frac {\frac {2 \int \frac {\cot (c+d x) \left (-\left (\left (-B a^2+2 A b a+b^2 B\right ) \tan (c+d x) a^2\right )+A \left (a^2+b^2\right )^2+b \left (-2 B a^3+3 A b a^2+A b^3\right ) \tan ^2(c+d x)\right )}{2 \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {\cot (c+d x) \left (-\left (\left (-B a^2+2 A b a+b^2 B\right ) \tan (c+d x) a^2\right )+A \left (a^2+b^2\right )^2+b \left (-2 B a^3+3 A b a^2+A b^3\right ) \tan ^2(c+d x)\right )}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {-\left (\left (-B a^2+2 A b a+b^2 B\right ) \tan (c+d x) a^2\right )+A \left (a^2+b^2\right )^2+b \left (-2 B a^3+3 A b a^2+A b^3\right ) \tan (c+d x)^2}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4136

\(\displaystyle \frac {\frac {\int -\frac {\left (-B a^2+2 A b a+b^2 B\right ) a^2+\left (A a^2+2 b B a-A b^2\right ) \tan (c+d x) a^2}{\sqrt {a+b \tan (c+d x)}}dx+A \left (a^2+b^2\right )^2 \int \frac {\cot (c+d x) \left (\tan ^2(c+d x)+1\right )}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {A \left (a^2+b^2\right )^2 \int \frac {\cot (c+d x) \left (\tan ^2(c+d x)+1\right )}{\sqrt {a+b \tan (c+d x)}}dx-\int \frac {\left (-B a^2+2 A b a+b^2 B\right ) a^2+\left (A a^2+2 b B a-A b^2\right ) \tan (c+d x) a^2}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {A \left (a^2+b^2\right )^2 \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx-\int \frac {\left (-B a^2+2 A b a+b^2 B\right ) a^2+\left (A a^2+2 b B a-A b^2\right ) \tan (c+d x) a^2}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a \left (a^2+b^2\right )}+\frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4022

\(\displaystyle \frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {A \left (a^2+b^2\right )^2 \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} a^2 (a-i b)^2 (-B+i A) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^2 (a+i b)^2 (B+i A) \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {A \left (a^2+b^2\right )^2 \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} a^2 (a-i b)^2 (-B+i A) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^2 (a+i b)^2 (B+i A) \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 4020

\(\displaystyle \frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {A \left (a^2+b^2\right )^2 \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx+\frac {i a^2 (a-i b)^2 (-B+i A) \int -\frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}+\frac {i a^2 (a+i b)^2 (B+i A) \int -\frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}}{a \left (a^2+b^2\right )}}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {A \left (a^2+b^2\right )^2 \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {i a^2 (a-i b)^2 (-B+i A) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}-\frac {i a^2 (a+i b)^2 (B+i A) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}}{a \left (a^2+b^2\right )}}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {A \left (a^2+b^2\right )^2 \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {a^2 (a-i b)^2 (-B+i A) \int \frac {1}{-\frac {i \tan ^2(c+d x)}{b}-\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}+\frac {a^2 (a+i b)^2 (B+i A) \int \frac {1}{\frac {i \tan ^2(c+d x)}{b}+\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}}{a \left (a^2+b^2\right )}}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {A \left (a^2+b^2\right )^2 \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {a^2 (a-i b)^2 (-B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}+\frac {a^2 (a+i b)^2 (B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}}{a \left (a^2+b^2\right )}}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {A \left (a^2+b^2\right )^2 \int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{d}-\frac {a^2 (a-i b)^2 (-B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}+\frac {a^2 (a+i b)^2 (B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}}{a \left (a^2+b^2\right )}}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {2 A \left (a^2+b^2\right )^2 \int \frac {1}{\frac {a+b \tan (c+d x)}{b}-\frac {a}{b}}d\sqrt {a+b \tan (c+d x)}}{b d}-\frac {a^2 (a-i b)^2 (-B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}+\frac {a^2 (a+i b)^2 (B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}}{a \left (a^2+b^2\right )}}{a \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {2 b (A b-a B)}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (-2 a^3 B+3 a^2 A b+A b^3\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {a^2 (a-i b)^2 (-B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}+\frac {a^2 (a+i b)^2 (B+i A) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}-\frac {2 A \left (a^2+b^2\right )^2 \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} d}}{a \left (a^2+b^2\right )}}{a \left (a^2+b^2\right )}\)

Input:

Int[(Cot[c + d*x]*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(5/2),x]
 

Output:

(2*b*(A*b - a*B))/(3*a*(a^2 + b^2)*d*(a + b*Tan[c + d*x])^(3/2)) + (((a^2* 
(a + I*b)^2*(I*A + B)*ArcTan[Tan[c + d*x]/Sqrt[a - I*b]])/(Sqrt[a - I*b]*d 
) - (a^2*(a - I*b)^2*(I*A - B)*ArcTan[Tan[c + d*x]/Sqrt[a + I*b]])/(Sqrt[a 
 + I*b]*d) - (2*A*(a^2 + b^2)^2*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]]) 
/(Sqrt[a]*d))/(a*(a^2 + b^2)) + (2*b*(3*a^2*A*b + A*b^3 - 2*a^3*B))/(a*(a^ 
2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]]))/(a*(a^2 + b^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4020
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[c*(d/f)   Subst[Int[(a + (b/d)*x)^m/(d^2 + 
c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
 

rule 4022
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(c + I*d)/2   Int[(a + b*Tan[e + f*x])^m*( 
1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2   Int[(a + b*Tan[e + f*x])^m 
*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c 
 - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]
 

rule 4092
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1) 
/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^ 
2 + b^2))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b* 
B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2 
)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n 
+ 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && 
 NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] 
&& (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] 
 || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4136
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^ 
n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[ 
(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*((1 + Tan[ 
e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, 
 C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] & 
&  !GtQ[n, 0] &&  !LeQ[n, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(12869\) vs. \(2(194)=388\).

Time = 0.15 (sec) , antiderivative size = 12870, normalized size of antiderivative = 57.46

method result size
derivativedivides \(\text {Expression too large to display}\) \(12870\)
default \(\text {Expression too large to display}\) \(12870\)

Input:

int(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x,method=_RETURNVER 
BOSE)
 

Output:

result too large to display
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7339 vs. \(2 (189) = 378\).

Time = 18.89 (sec) , antiderivative size = 14697, normalized size of antiderivative = 65.61 \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Too large to display} \] Input:

integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorithm= 
"fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \cot {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(5/2),x)
 

Output:

Integral((A + B*tan(c + d*x))*cot(c + d*x)/(a + b*tan(c + d*x))**(5/2), x)
 

Maxima [F]

\[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \cot \left (d x + c\right )}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorithm= 
"maxima")
 

Output:

integrate((B*tan(d*x + c) + A)*cot(d*x + c)/(b*tan(d*x + c) + a)^(5/2), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorithm= 
"giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{%%%{1,[8,18,6]%%%}+%%%{8,[8,16,6]%%%}+%%%{28,[8,14,6]%%%}+ 
%%%{56,[8
 

Mupad [B] (verification not implemented)

Time = 13.66 (sec) , antiderivative size = 45681, normalized size of antiderivative = 203.93 \[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Too large to display} \] Input:

int((cot(c + d*x)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(5/2),x)
 

Output:

atan(-(((-(((8*A^2*a^5*d^2 - 8*B^2*a^5*d^2 - 80*A^2*a^3*b^2*d^2 + 80*B^2*a 
^3*b^2*d^2 + 16*A*B*b^5*d^2 + 40*A^2*a*b^4*d^2 - 40*B^2*a*b^4*d^2 - 160*A* 
B*a^2*b^3*d^2 + 80*A*B*a^4*b*d^2)^2/4 - (A^4 + 2*A^2*B^2 + B^4)*(16*a^10*d 
^4 + 16*b^10*d^4 + 80*a^2*b^8*d^4 + 160*a^4*b^6*d^4 + 160*a^6*b^4*d^4 + 80 
*a^8*b^2*d^4))^(1/2) - 4*A^2*a^5*d^2 + 4*B^2*a^5*d^2 + 40*A^2*a^3*b^2*d^2 
- 40*B^2*a^3*b^2*d^2 - 8*A*B*b^5*d^2 - 20*A^2*a*b^4*d^2 + 20*B^2*a*b^4*d^2 
 + 80*A*B*a^2*b^3*d^2 - 40*A*B*a^4*b*d^2)/(16*(a^10*d^4 + b^10*d^4 + 5*a^2 
*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4)))^(1/2)*(((a + 
 b*tan(c + d*x))^(1/2)*(256*A^2*a^15*b^44*d^7 + 4608*A^2*a^17*b^42*d^7 + 4 
0512*A^2*a^19*b^40*d^7 + 224768*A^2*a^21*b^38*d^7 + 864768*A^2*a^23*b^36*d 
^7 + 2419200*A^2*a^25*b^34*d^7 + 5055232*A^2*a^27*b^32*d^7 + 8007168*A^2*a 
^29*b^30*d^7 + 9664512*A^2*a^31*b^28*d^7 + 8859136*A^2*a^33*b^26*d^7 + 609 
5232*A^2*a^35*b^24*d^7 + 3095040*A^2*a^37*b^22*d^7 + 1164800*A^2*a^39*b^20 
*d^7 + 376320*A^2*a^41*b^18*d^7 + 154368*A^2*a^43*b^16*d^7 + 76288*A^2*a^4 
5*b^14*d^7 + 28416*A^2*a^47*b^12*d^7 + 6144*A^2*a^49*b^10*d^7 + 576*A^2*a^ 
51*b^8*d^7 - 1344*B^2*a^19*b^40*d^7 - 15872*B^2*a^21*b^38*d^7 - 81408*B^2* 
a^23*b^36*d^7 - 225792*B^2*a^25*b^34*d^7 - 302848*B^2*a^27*b^32*d^7 + 1397 
76*B^2*a^29*b^30*d^7 + 1537536*B^2*a^31*b^28*d^7 + 3587584*B^2*a^33*b^26*d 
^7 + 5106816*B^2*a^35*b^24*d^7 + 5051904*B^2*a^37*b^22*d^7 + 3587584*B^2*a 
^39*b^20*d^7 + 1817088*B^2*a^41*b^18*d^7 + 628992*B^2*a^43*b^16*d^7 + 1...
 

Reduce [F]

\[ \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {a +\tan \left (d x +c \right ) b}\, \cot \left (d x +c \right )}{\tan \left (d x +c \right )^{2} b^{2}+2 \tan \left (d x +c \right ) a b +a^{2}}d x \] Input:

int(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x)
 

Output:

int((sqrt(tan(c + d*x)*b + a)*cot(c + d*x))/(tan(c + d*x)**2*b**2 + 2*tan( 
c + d*x)*a*b + a**2),x)