\(\int \frac {(a+b \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx\) [440]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 311 \[ \int \frac {(a+b \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {(i a-b)^{3/2} (A+i B) \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {(i a+b)^{3/2} (A-i B) \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}-\frac {2 (8 A b+7 a B) \sqrt {a+b \tan (c+d x)}}{35 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (35 a^2 A-3 A b^2-42 a b B\right ) \sqrt {a+b \tan (c+d x)}}{105 a d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (140 a^2 A b+6 A b^3+105 a^3 B-21 a b^2 B\right ) \sqrt {a+b \tan (c+d x)}}{105 a^2 d \sqrt {\tan (c+d x)}} \] Output:

-(I*a-b)^(3/2)*(A+I*B)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+ 
c))^(1/2))/d-(I*a+b)^(3/2)*(A-I*B)*arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/ 
(a+b*tan(d*x+c))^(1/2))/d-2/7*a*A*(a+b*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(7/2 
)-2/35*(8*A*b+7*B*a)*(a+b*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(5/2)+2/105*(35*A 
*a^2-3*A*b^2-42*B*a*b)*(a+b*tan(d*x+c))^(1/2)/a/d/tan(d*x+c)^(3/2)+2/105*( 
140*A*a^2*b+6*A*b^3+105*B*a^3-21*B*a*b^2)*(a+b*tan(d*x+c))^(1/2)/a^2/d/tan 
(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 3.61 (sec) , antiderivative size = 346, normalized size of antiderivative = 1.11 \[ \int \frac {(a+b \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\frac {-35 a^3 b B \sqrt {a+b \tan (c+d x)}-5 a^3 (6 a A-7 b B) \sqrt {a+b \tan (c+d x)}-6 a^3 (8 A b+7 a B) \tan (c+d x) \sqrt {a+b \tan (c+d x)}+a \tan ^2(c+d x) \left (-105 (-1)^{3/4} a^2 \left ((-a+i b)^{3/2} (A-i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )+(a+i b)^{3/2} (A+i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )\right ) \tan ^{\frac {3}{2}}(c+d x)+2 a \left (35 a^2 A-3 A b^2-42 a b B\right ) \sqrt {a+b \tan (c+d x)}+2 \left (140 a^2 A b+6 A b^3+105 a^3 B-21 a b^2 B\right ) \tan (c+d x) \sqrt {a+b \tan (c+d x)}\right )}{105 a^3 d \tan ^{\frac {7}{2}}(c+d x)} \] Input:

Integrate[((a + b*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^( 
9/2),x]
 

Output:

(-35*a^3*b*B*Sqrt[a + b*Tan[c + d*x]] - 5*a^3*(6*a*A - 7*b*B)*Sqrt[a + b*T 
an[c + d*x]] - 6*a^3*(8*A*b + 7*a*B)*Tan[c + d*x]*Sqrt[a + b*Tan[c + d*x]] 
 + a*Tan[c + d*x]^2*(-105*(-1)^(3/4)*a^2*((-a + I*b)^(3/2)*(A - I*B)*ArcTa 
n[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]] 
 + (a + I*b)^(3/2)*(A + I*B)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + 
 d*x]])/Sqrt[a + b*Tan[c + d*x]]])*Tan[c + d*x]^(3/2) + 2*a*(35*a^2*A - 3* 
A*b^2 - 42*a*b*B)*Sqrt[a + b*Tan[c + d*x]] + 2*(140*a^2*A*b + 6*A*b^3 + 10 
5*a^3*B - 21*a*b^2*B)*Tan[c + d*x]*Sqrt[a + b*Tan[c + d*x]]))/(105*a^3*d*T 
an[c + d*x]^(7/2))
 

Rubi [A] (verified)

Time = 2.33 (sec) , antiderivative size = 352, normalized size of antiderivative = 1.13, number of steps used = 20, number of rules used = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.543, Rules used = {3042, 4088, 27, 3042, 4132, 27, 3042, 4132, 27, 3042, 4132, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan (c+d x)^{9/2}}dx\)

\(\Big \downarrow \) 4088

\(\displaystyle \frac {2}{7} \int \frac {-b (6 a A-7 b B) \tan ^2(c+d x)-7 \left (A a^2-2 b B a-A b^2\right ) \tan (c+d x)+a (8 A b+7 a B)}{2 \tan ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \int \frac {-b (6 a A-7 b B) \tan ^2(c+d x)-7 \left (A a^2-2 b B a-A b^2\right ) \tan (c+d x)+a (8 A b+7 a B)}{\tan ^{\frac {7}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx-\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \int \frac {-b (6 a A-7 b B) \tan (c+d x)^2-7 \left (A a^2-2 b B a-A b^2\right ) \tan (c+d x)+a (8 A b+7 a B)}{\tan (c+d x)^{7/2} \sqrt {a+b \tan (c+d x)}}dx-\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4132

\(\displaystyle \frac {1}{7} \left (-\frac {2 \int \frac {4 a b (8 A b+7 a B) \tan ^2(c+d x)+35 a \left (B a^2+2 A b a-b^2 B\right ) \tan (c+d x)+a \left (35 A a^2-42 b B a-3 A b^2\right )}{2 \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx}{5 a}-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (-\frac {\int \frac {4 a b (8 A b+7 a B) \tan ^2(c+d x)+35 a \left (B a^2+2 A b a-b^2 B\right ) \tan (c+d x)+a \left (35 A a^2-42 b B a-3 A b^2\right )}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx}{5 a}-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (-\frac {\int \frac {4 a b (8 A b+7 a B) \tan (c+d x)^2+35 a \left (B a^2+2 A b a-b^2 B\right ) \tan (c+d x)+a \left (35 A a^2-42 b B a-3 A b^2\right )}{\tan (c+d x)^{5/2} \sqrt {a+b \tan (c+d x)}}dx}{5 a}-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4132

\(\displaystyle \frac {1}{7} \left (-\frac {-\frac {2 \int -\frac {-105 \left (A a^2-2 b B a-A b^2\right ) \tan (c+d x) a^2-2 b \left (35 A a^2-42 b B a-3 A b^2\right ) \tan ^2(c+d x) a+\left (105 B a^3+140 A b a^2-21 b^2 B a+6 A b^3\right ) a}{2 \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx}{3 a}-\frac {2 \left (35 a^2 A-42 a b B-3 A b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (-\frac {\frac {\int \frac {-105 \left (A a^2-2 b B a-A b^2\right ) \tan (c+d x) a^2-2 b \left (35 A a^2-42 b B a-3 A b^2\right ) \tan ^2(c+d x) a+\left (105 B a^3+140 A b a^2-21 b^2 B a+6 A b^3\right ) a}{\tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}dx}{3 a}-\frac {2 \left (35 a^2 A-42 a b B-3 A b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (-\frac {\frac {\int \frac {-105 \left (A a^2-2 b B a-A b^2\right ) \tan (c+d x) a^2-2 b \left (35 A a^2-42 b B a-3 A b^2\right ) \tan (c+d x)^2 a+\left (105 B a^3+140 A b a^2-21 b^2 B a+6 A b^3\right ) a}{\tan (c+d x)^{3/2} \sqrt {a+b \tan (c+d x)}}dx}{3 a}-\frac {2 \left (35 a^2 A-42 a b B-3 A b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4132

\(\displaystyle \frac {1}{7} \left (-\frac {\frac {-\frac {2 \int \frac {105 \left (\left (A a^2-2 b B a-A b^2\right ) a^3+\left (B a^2+2 A b a-b^2 B\right ) \tan (c+d x) a^3\right )}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {2 \left (105 a^3 B+140 a^2 A b-21 a b^2 B+6 A b^3\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 \left (35 a^2 A-42 a b B-3 A b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (-\frac {\frac {-\frac {105 \int \frac {\left (A a^2-2 b B a-A b^2\right ) a^3+\left (B a^2+2 A b a-b^2 B\right ) \tan (c+d x) a^3}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {2 \left (105 a^3 B+140 a^2 A b-21 a b^2 B+6 A b^3\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 \left (35 a^2 A-42 a b B-3 A b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (-\frac {\frac {-\frac {105 \int \frac {\left (A a^2-2 b B a-A b^2\right ) a^3+\left (B a^2+2 A b a-b^2 B\right ) \tan (c+d x) a^3}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a}-\frac {2 \left (105 a^3 B+140 a^2 A b-21 a b^2 B+6 A b^3\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 \left (35 a^2 A-42 a b B-3 A b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )-\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 4099

\(\displaystyle -\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {-\frac {2 \left (35 a^2 A-42 a b B-3 A b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {-\frac {2 \left (105 a^3 B+140 a^2 A b-21 a b^2 B+6 A b^3\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {105 \left (\frac {1}{2} a^3 (a+i b)^2 (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^3 (a-i b)^2 (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a}}{3 a}}{5 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {-\frac {2 \left (35 a^2 A-42 a b B-3 A b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {-\frac {2 \left (105 a^3 B+140 a^2 A b-21 a b^2 B+6 A b^3\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {105 \left (\frac {1}{2} a^3 (a+i b)^2 (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^3 (a-i b)^2 (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a}}{3 a}}{5 a}\right )\)

\(\Big \downarrow \) 4098

\(\displaystyle -\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {-\frac {2 \left (35 a^2 A-42 a b B-3 A b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {-\frac {2 \left (105 a^3 B+140 a^2 A b-21 a b^2 B+6 A b^3\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {105 \left (\frac {a^3 (a-i b)^2 (A-i B) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+\frac {a^3 (a+i b)^2 (A+i B) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}\right )}{a}}{3 a}}{5 a}\right )\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {-\frac {2 \left (35 a^2 A-42 a b B-3 A b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {-\frac {2 \left (105 a^3 B+140 a^2 A b-21 a b^2 B+6 A b^3\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {105 \left (\frac {a^3 (a+i b)^2 (A+i B) \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^3 (a-i b)^2 (A-i B) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}\right )}{a}}{3 a}}{5 a}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {-\frac {2 \left (35 a^2 A-42 a b B-3 A b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {-\frac {2 \left (105 a^3 B+140 a^2 A b-21 a b^2 B+6 A b^3\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {105 \left (\frac {a^3 (a-i b)^2 (A-i B) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^3 (a+i b)^2 (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}\right )}{a}}{3 a}}{5 a}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {2 a A \sqrt {a+b \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (-\frac {2 (7 a B+8 A b) \sqrt {a+b \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {-\frac {2 \left (35 a^2 A-42 a b B-3 A b^2\right ) \sqrt {a+b \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {-\frac {2 \left (105 a^3 B+140 a^2 A b-21 a b^2 B+6 A b^3\right ) \sqrt {a+b \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {105 \left (\frac {a^3 (a+i b)^2 (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {a^3 (a-i b)^2 (A-i B) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )}{a}}{3 a}}{5 a}\right )\)

Input:

Int[((a + b*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(9/2),x 
]
 

Output:

(-2*a*A*Sqrt[a + b*Tan[c + d*x]])/(7*d*Tan[c + d*x]^(7/2)) + ((-2*(8*A*b + 
 7*a*B)*Sqrt[a + b*Tan[c + d*x]])/(5*d*Tan[c + d*x]^(5/2)) - ((-2*(35*a^2* 
A - 3*A*b^2 - 42*a*b*B)*Sqrt[a + b*Tan[c + d*x]])/(3*d*Tan[c + d*x]^(3/2)) 
 + ((-105*((a^3*(a + I*b)^2*(A + I*B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d 
*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a - b]*d) + (a^3*(a - I*b)^2*(A - 
 I*B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]] 
)/(Sqrt[I*a + b]*d)))/a - (2*(140*a^2*A*b + 6*A*b^3 + 105*a^3*B - 21*a*b^2 
*B)*Sqrt[a + b*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]))/(3*a))/(5*a))/7
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4088
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(b*c - a*d)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x 
])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1/(d*(n + 1)*(c^2 + d^2)) 
  Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a*A*d* 
(b*d*(m - 1) - a*c*(n + 1)) + (b*B*c - (A*b + a*B)*d)*(b*c*(m - 1) + a*d*(n 
 + 1)) - d*((a*A - b*B)*(b*c - a*d) + (A*b + a*B)*(a*c + b*d))*(n + 1)*Tan[ 
e + f*x] - b*(d*(A*b*c + a*B*c - a*A*d)*(m + n) - b*B*(c^2*(m - 1) - d^2*(n 
 + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && 
 NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] & 
& LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 
Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 0.95 (sec) , antiderivative size = 2403086, normalized size of antiderivative = 7726.96

\[\text {output too large to display}\]

Input:

int((a+b*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(9/2),x)
 

Output:

result too large to display
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 12128 vs. \(2 (259) = 518\).

Time = 2.10 (sec) , antiderivative size = 12128, normalized size of antiderivative = 39.00 \[ \int \frac {(a+b \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+b*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(9/2),x, algo 
rithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+b*tan(d*x+c))**(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(9/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+b \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} {\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\tan \left (d x + c\right )^{\frac {9}{2}}} \,d x } \] Input:

integrate((a+b*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(9/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*tan(d*x + c) + A)*(b*tan(d*x + c) + a)^(3/2)/tan(d*x + c)^(9/ 
2), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+b \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+b*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(9/2),x, algo 
rithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\int \frac {\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}}{{\mathrm {tan}\left (c+d\,x\right )}^{9/2}} \,d x \] Input:

int(((A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(3/2))/tan(c + d*x)^(9/2),x 
)
 

Output:

int(((A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(3/2))/tan(c + d*x)^(9/2), 
x)
 

Reduce [F]

\[ \int \frac {(a+b \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\tan ^{\frac {9}{2}}(c+d x)} \, dx=\frac {-28 \sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}\, \tan \left (d x +c \right )^{3} a^{2} b +36 \sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}\, \tan \left (d x +c \right )^{3} b^{3}+14 \sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}\, \tan \left (d x +c \right )^{2} a^{3}-18 \sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}\, \tan \left (d x +c \right )^{2} a \,b^{2}-18 \sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}\, \tan \left (d x +c \right ) a^{2} b -6 \sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}\, a^{3}-63 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}}{\tan \left (d x +c \right )^{3} b +\tan \left (d x +c \right )^{2} a}d x \right ) \tan \left (d x +c \right )^{4} a^{3} b d +21 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}}{\tan \left (d x +c \right )^{3} b +\tan \left (d x +c \right )^{2} a}d x \right ) \tan \left (d x +c \right )^{4} a \,b^{3} d +21 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}}{\tan \left (d x +c \right )^{2} b +\tan \left (d x +c \right ) a}d x \right ) \tan \left (d x +c \right )^{4} a^{4} d -63 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sqrt {a +\tan \left (d x +c \right ) b}}{\tan \left (d x +c \right )^{2} b +\tan \left (d x +c \right ) a}d x \right ) \tan \left (d x +c \right )^{4} a^{2} b^{2} d}{21 \tan \left (d x +c \right )^{4} a d} \] Input:

int((a+b*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(9/2),x)
 

Output:

( - 28*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*b + a)*tan(c + d*x)**3*a**2*b 
+ 36*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*b + a)*tan(c + d*x)**3*b**3 + 14 
*sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*b + a)*tan(c + d*x)**2*a**3 - 18*sqr 
t(tan(c + d*x))*sqrt(tan(c + d*x)*b + a)*tan(c + d*x)**2*a*b**2 - 18*sqrt( 
tan(c + d*x))*sqrt(tan(c + d*x)*b + a)*tan(c + d*x)*a**2*b - 6*sqrt(tan(c 
+ d*x))*sqrt(tan(c + d*x)*b + a)*a**3 - 63*int((sqrt(tan(c + d*x))*sqrt(ta 
n(c + d*x)*b + a))/(tan(c + d*x)**3*b + tan(c + d*x)**2*a),x)*tan(c + d*x) 
**4*a**3*b*d + 21*int((sqrt(tan(c + d*x))*sqrt(tan(c + d*x)*b + a))/(tan(c 
 + d*x)**3*b + tan(c + d*x)**2*a),x)*tan(c + d*x)**4*a*b**3*d + 21*int((sq 
rt(tan(c + d*x))*sqrt(tan(c + d*x)*b + a))/(tan(c + d*x)**2*b + tan(c + d* 
x)*a),x)*tan(c + d*x)**4*a**4*d - 63*int((sqrt(tan(c + d*x))*sqrt(tan(c + 
d*x)*b + a))/(tan(c + d*x)**2*b + tan(c + d*x)*a),x)*tan(c + d*x)**4*a**2* 
b**2*d)/(21*tan(c + d*x)**4*a*d)