\(\int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx\) [541]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 38, antiderivative size = 155 \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {(1+i) \sqrt {a} (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {2 (i A+3 B) \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {2 A \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d} \] Output:

(1+I)*a^(1/2)*(I*A+B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d* 
x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d-2/3*(I*A+3*B)*cot(d*x+c)^ 
(1/2)*(a+I*a*tan(d*x+c))^(1/2)/d-2/3*A*cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c)) 
^(1/2)/d
 

Mathematica [A] (verified)

Time = 2.65 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.79 \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {\sqrt {\cot (c+d x)} \left (3 \sqrt {2} (i A+B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)}-2 (i A+3 B+A \cot (c+d x)) \sqrt {a+i a \tan (c+d x)}\right )}{3 d} \] Input:

Integrate[Cot[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x 
]),x]
 

Output:

(Sqrt[Cot[c + d*x]]*(3*Sqrt[2]*(I*A + B)*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + 
 d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[I*a*Tan[c + d*x]] - 2*(I*A + 3*B 
+ A*Cot[c + d*x])*Sqrt[a + I*a*Tan[c + d*x]]))/(3*d)
 

Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.05, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.289, Rules used = {3042, 4729, 3042, 4081, 27, 3042, 4081, 27, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot (c+d x)^{5/2} \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\sqrt {i \tan (c+d x) a+a} (A+B \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\sqrt {i \tan (c+d x) a+a} (A+B \tan (c+d x))}{\tan (c+d x)^{5/2}}dx\)

\(\Big \downarrow \) 4081

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 \int \frac {\sqrt {i \tan (c+d x) a+a} (a (i A+3 B)-2 a A \tan (c+d x))}{2 \tan ^{\frac {3}{2}}(c+d x)}dx}{3 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (a (i A+3 B)-2 a A \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)}dx}{3 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (a (i A+3 B)-2 a A \tan (c+d x))}{\tan (c+d x)^{3/2}}dx}{3 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4081

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {2 \int -\frac {3 a^2 (A-i B) \sqrt {i \tan (c+d x) a+a}}{2 \sqrt {\tan (c+d x)}}dx}{a}-\frac {2 a (3 B+i A) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {-3 a (A-i B) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 a (3 B+i A) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {-3 a (A-i B) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 a (3 B+i A) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {6 i a^3 (A-i B) \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {2 a (3 B+i A) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {-\frac {(3-3 i) a^{3/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a (3 B+i A) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )\)

Input:

Int[Cot[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]
 

Output:

Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((-2*A*Sqrt[a + I*a*Tan[c + d*x]])/( 
3*d*Tan[c + d*x]^(3/2)) + (((-3 + 3*I)*a^(3/2)*(A - I*B)*ArcTanh[((1 + I)* 
Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2*a*(I*A + 3 
*B)*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]))/(3*a))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4081
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*(n + 
1)*(c^2 + d^2))), x] - Simp[1/(a*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + 
f*x])^m*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c* 
m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Fr 
eeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 
0] && LtQ[n, -1]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 556 vs. \(2 (126 ) = 252\).

Time = 0.93 (sec) , antiderivative size = 557, normalized size of antiderivative = 3.59

method result size
derivativedivides \(-\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {5}{2}} \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-3 i B \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{2}+3 B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-12 B \tan \left (d x +c \right )^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+3 A \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{2}-8 A \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-4 i A \tan \left (d x +c \right )^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+12 i B \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+4 i A \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{6 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (i-\tan \left (d x +c \right )\right )}\) \(557\)
default \(-\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {5}{2}} \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-3 i B \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{2}+3 B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-12 B \tan \left (d x +c \right )^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+3 A \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{2}-8 A \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-4 i A \tan \left (d x +c \right )^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+12 i B \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+4 i A \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{6 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (i-\tan \left (d x +c \right )\right )}\) \(557\)

Input:

int(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x,method=_R 
ETURNVERBOSE)
 

Output:

-1/6/d*(1/tan(d*x+c))^(5/2)*tan(d*x+c)*(a*(1+I*tan(d*x+c)))^(1/2)*(3*I*A*l 
n((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*ta 
n(d*x+c))/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^3-3*I*B*ln((2*2^(1/2)*(-I*a 
)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x 
+c)+I))*2^(1/2)*a*tan(d*x+c)^2+3*B*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*t 
an(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*ta 
n(d*x+c)^3-12*B*tan(d*x+c)^2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^ 
(1/2)+3*A*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2) 
-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^2-8*A*tan(d*x+c) 
*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)-4*I*A*(-I*a)^(1/2)*(a* 
tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^2+12*I*B*(-I*a)^(1/2)*tan(d* 
x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+4*I*A*(-I*a)^(1/2)*(a*tan(d*x+c 
)*(1+I*tan(d*x+c)))^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-I*a)^(1 
/2)/(I-tan(d*x+c))
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 430 vs. \(2 (117) = 234\).

Time = 0.11 (sec) , antiderivative size = 430, normalized size of antiderivative = 2.77 \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {3 \, \sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a}{d^{2}}} \log \left (-\frac {4 \, {\left ({\left (A - i \, B\right )} a e^{\left (i \, d x + i \, c\right )} + {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - 3 \, \sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a}{d^{2}}} \log \left (-\frac {4 \, {\left ({\left (A - i \, B\right )} a e^{\left (i \, d x + i \, c\right )} - {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) + 4 \, \sqrt {2} {\left ({\left (2 i \, A + 3 \, B\right )} e^{\left (3 i \, d x + 3 i \, c\right )} - 3 \, B e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}}{6 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \] Input:

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, al 
gorithm="fricas")
 

Output:

-1/6*(3*sqrt(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-(I*A^2 + 2*A*B - I*B^2)* 
a/d^2)*log(-4*((A - I*B)*a*e^(I*d*x + I*c) + (d*e^(2*I*d*x + 2*I*c) - d)*s 
qrt(-(I*A^2 + 2*A*B - I*B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt 
((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-I*d*x - I*c)/ 
(I*A + B)) - 3*sqrt(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-(I*A^2 + 2*A*B - 
I*B^2)*a/d^2)*log(-4*((A - I*B)*a*e^(I*d*x + I*c) - (d*e^(2*I*d*x + 2*I*c) 
 - d)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1 
))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-I*d*x 
- I*c)/(I*A + B)) + 4*sqrt(2)*((2*I*A + 3*B)*e^(3*I*d*x + 3*I*c) - 3*B*e^( 
I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c 
) + I)/(e^(2*I*d*x + 2*I*c) - 1)))/(d*e^(2*I*d*x + 2*I*c) - d)
 

Sympy [F(-1)]

Timed out. \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(cot(d*x+c)**(5/2)*(a+I*a*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1157 vs. \(2 (117) = 234\).

Time = 0.31 (sec) , antiderivative size = 1157, normalized size of antiderivative = 7.46 \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Too large to display} \] Input:

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, al 
gorithm="maxima")
 

Output:

1/6*(2*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 
 1)*((3*(-(I - 1)*A - (I + 1)*B)*cos(3*d*x + 3*c) + (-(I - 1)*A + (3*I + 3 
)*B)*cos(d*x + c) + 3*((I + 1)*A - (I - 1)*B)*sin(3*d*x + 3*c) + ((I + 1)* 
A + (3*I - 3)*B)*sin(d*x + c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
 + 2*c) - 1)) + (3*(-(I + 1)*A + (I - 1)*B)*cos(3*d*x + 3*c) + (-(I + 1)*A 
 - (3*I - 3)*B)*cos(d*x + c) + 3*(-(I - 1)*A - (I + 1)*B)*sin(3*d*x + 3*c) 
 + (-(I - 1)*A + (3*I + 3)*B)*sin(d*x + c))*sin(3/2*arctan2(sin(2*d*x + 2* 
c), cos(2*d*x + 2*c) - 1)))*sqrt(a) + 3*(2*((-(I + 1)*A + (I - 1)*B)*cos(2 
*d*x + 2*c)^2 + (-(I + 1)*A + (I - 1)*B)*sin(2*d*x + 2*c)^2 + 2*((I + 1)*A 
 - (I - 1)*B)*cos(2*d*x + 2*c) - (I + 1)*A + (I - 1)*B)*arctan2(2*(cos(2*d 
*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*a 
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + 2*sin(d*x + c), 2*(cos(2 
*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2 
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + 2*cos(d*x + c)) + (((I 
 - 1)*A + (I + 1)*B)*cos(2*d*x + 2*c)^2 + ((I - 1)*A + (I + 1)*B)*sin(2*d* 
x + 2*c)^2 + 2*(-(I - 1)*A - (I + 1)*B)*cos(2*d*x + 2*c) + (I - 1)*A + (I 
+ 1)*B)*log(4*cos(d*x + c)^2 + 4*sin(d*x + c)^2 + 4*sqrt(cos(2*d*x + 2*c)^ 
2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)*(cos(1/2*arctan2(sin(2*d* 
x + 2*c), cos(2*d*x + 2*c) - 1))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos 
(2*d*x + 2*c) - 1))^2) + 8*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2...
 

Giac [F(-2)]

Exception generated. \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, al 
gorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \] Input:

int(cot(c + d*x)^(5/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2), 
x)
                                                                                    
                                                                                    
 

Output:

int(cot(c + d*x)^(5/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2), 
 x)
 

Reduce [F]

\[ \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\sqrt {a}\, \left (\left (\int \sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right )^{2} \tan \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right )^{2}d x \right ) a \right ) \] Input:

int(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)
 

Output:

sqrt(a)*(int(sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x))*cot(c + d*x)**2*t 
an(c + d*x),x)*b + int(sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x))*cot(c + 
 d*x)**2,x)*a)