\(\int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx\) [555]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-1)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 38, antiderivative size = 236 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\frac {(-1)^{3/4} a^{5/2} (2 A-5 i B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {(4+4 i) a^{5/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {a^2 (2 i A-B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\cot (c+d x)}}-\frac {2 a A \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}{d} \] Output:

(-1)^(3/4)*a^(5/2)*(2*A-5*I*B)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/ 
(a+I*a*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d+(4+4*I)*a^(5 
/2)*(A-I*B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2 
))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d+a^2*(2*I*A-B)*(a+I*a*tan(d*x+c))^(1 
/2)/d/cot(d*x+c)^(1/2)-2*a*A*cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(3/2)/d
 

Mathematica [A] (verified)

Time = 6.43 (sec) , antiderivative size = 288, normalized size of antiderivative = 1.22 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=-\frac {i a^2 \sqrt {\cot (c+d x)} \left (-3 \sqrt [4]{-1} a A \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {\tan (c+d x)} (-i+\tan (c+d x))+5 \sqrt {a} (A-i B) \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {i a \tan (c+d x)} (-i+\tan (c+d x))+\sqrt {1+i \tan (c+d x)} \left (4 \sqrt {2} (i A+B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}+a (-i+\tan (c+d x)) (2 A+B \tan (c+d x))\right )\right )}{d \sqrt {1+i \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \] Input:

Integrate[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d 
*x]),x]
 

Output:

((-I)*a^2*Sqrt[Cot[c + d*x]]*(-3*(-1)^(1/4)*a*A*ArcSinh[(-1)^(1/4)*Sqrt[Ta 
n[c + d*x]]]*Sqrt[Tan[c + d*x]]*(-I + Tan[c + d*x]) + 5*Sqrt[a]*(A - I*B)* 
ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[I*a*Tan[c + d*x]]*(-I + Tan[c 
 + d*x]) + Sqrt[1 + I*Tan[c + d*x]]*(4*Sqrt[2]*(I*A + B)*ArcTanh[(Sqrt[2]* 
Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[I*a*Tan[c + d*x]] 
*Sqrt[a + I*a*Tan[c + d*x]] + a*(-I + Tan[c + d*x])*(2*A + B*Tan[c + d*x]) 
)))/(d*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])
 

Rubi [A] (verified)

Time = 1.55 (sec) , antiderivative size = 223, normalized size of antiderivative = 0.94, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.421, Rules used = {3042, 4729, 3042, 4076, 27, 3042, 4077, 27, 3042, 4084, 3042, 4027, 218, 4082, 65, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot (c+d x)^{3/2} (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {(i \tan (c+d x) a+a)^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {(i \tan (c+d x) a+a)^{5/2} (A+B \tan (c+d x))}{\tan (c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 4076

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (2 \int \frac {(i \tan (c+d x) a+a)^{3/2} (a (4 i A+B)+a (2 A+i B) \tan (c+d x))}{2 \sqrt {\tan (c+d x)}}dx-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\int \frac {(i \tan (c+d x) a+a)^{3/2} (a (4 i A+B)+a (2 A+i B) \tan (c+d x))}{\sqrt {\tan (c+d x)}}dx-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\int \frac {(i \tan (c+d x) a+a)^{3/2} (a (4 i A+B)+a (2 A+i B) \tan (c+d x))}{\sqrt {\tan (c+d x)}}dx-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4077

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\int \frac {\sqrt {i \tan (c+d x) a+a} \left (3 a^2 (2 i A+B)-a^2 (2 A-5 i B) \tan (c+d x)\right )}{2 \sqrt {\tan (c+d x)}}dx+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} \int \frac {\sqrt {i \tan (c+d x) a+a} \left (3 a^2 (2 i A+B)-a^2 (2 A-5 i B) \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} \int \frac {\sqrt {i \tan (c+d x) a+a} \left (3 a^2 (2 i A+B)-a^2 (2 A-5 i B) \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}}dx+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4084

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} \left (8 a^2 (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-a (5 B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx\right )+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} \left (8 a^2 (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-a (5 B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx\right )+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} \left (-\frac {16 i a^4 (B+i A) \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-a (5 B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx\right )+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} \left (\frac {(8-8 i) a^{5/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-a (5 B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx\right )+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4082

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} \left (\frac {(8-8 i) a^{5/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {a^3 (5 B+2 i A) \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}d\tan (c+d x)}{d}\right )+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 65

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} \left (\frac {(8-8 i) a^{5/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^3 (5 B+2 i A) \int \frac {1}{1-\frac {i a \tan (c+d x)}{i \tan (c+d x) a+a}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}\right )+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} \left (\frac {2 \sqrt [4]{-1} a^{5/2} (5 B+2 i A) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(8-8 i) a^{5/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\right )+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}\right )\)

Input:

Int[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]),x 
]
 

Output:

Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(((2*(-1)^(1/4)*a^(5/2)*((2*I)*A + 5 
*B)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d* 
x]]])/d + ((8 - 8*I)*a^(5/2)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c 
 + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d)/2 + (a^2*((2*I)*A - B)*Sqrt[Tan[ 
c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d - (2*a*A*(a + I*a*Tan[c + d*x])^(3 
/2))/(d*Sqrt[Tan[c + d*x]]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4076
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-a^2)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n 
+ 1)/(d*f*(b*c + a*d)*(n + 1))), x] - Simp[a/(d*(b*c + a*d)*(n + 1))   Int[ 
(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n 
 - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m - 1) + b 
*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] 
 && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]
 

rule 4077
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + 
n))), x] + Simp[1/(d*(m + n))   Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan 
[e + f*x])^n*Simp[a*A*d*(m + n) + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - 
 a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && 
GtQ[m, 1] &&  !LtQ[n, -1]
 

rule 4082
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(B/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x]], 
x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 + b^2, 0] && EqQ[A*b + a*B, 0]
 

rule 4084
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b + a*B)/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x], x] 
 - Simp[B/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[ 
e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - 
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 570 vs. \(2 (193 ) = 386\).

Time = 0.79 (sec) , antiderivative size = 571, normalized size of antiderivative = 2.42

method result size
derivativedivides \(-\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {3}{2}} \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (-6 i A \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \tan \left (d x +c \right )+2 i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+2 B \sqrt {-i a}\, \sqrt {i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-3 B \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \tan \left (d x +c \right )-4 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \tan \left (d x +c \right )+2 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+4 A \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+4 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \tan \left (d x +c \right )\right )}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(571\)
default \(-\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {3}{2}} \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (-6 i A \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \tan \left (d x +c \right )+2 i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+2 B \sqrt {-i a}\, \sqrt {i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-3 B \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \tan \left (d x +c \right )-4 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \tan \left (d x +c \right )+2 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+4 A \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+4 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \tan \left (d x +c \right )\right )}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(571\)

Input:

int(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x,method=_R 
ETURNVERBOSE)
 

Output:

-1/2/d*(1/tan(d*x+c))^(3/2)*tan(d*x+c)*(a*(1+I*tan(d*x+c)))^(1/2)*a^2*(-6* 
I*A*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)) 
)^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*tan(d*x+c)+2*I*2^(1/2)*(I*a)^(1/2)*l 
n((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*ta 
n(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)+2*B*(-I*a)^(1/2)*(I*a)^(1/2)*tan(d* 
x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-3*B*(-I*a)^(1/2)*ln(1/2*(2*I*a* 
tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1 
/2))*a*tan(d*x+c)-4*I*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c 
)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*tan(d*x+c)+2*(I*a) 
^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^ 
(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)+4*A*(a*tan(d*x+c)*( 
1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)+4*(-I*a)^(1/2)*ln(1/2*(2*I 
*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a) 
^(1/2))*a*tan(d*x+c))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(- 
I*a)^(1/2)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 849 vs. \(2 (182) = 364\).

Time = 0.10 (sec) , antiderivative size = 849, normalized size of antiderivative = 3.60 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\text {Too large to display} \] Input:

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, al 
gorithm="fricas")
 

Output:

1/4*(8*sqrt(2)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^5/d^2)*(d*e^(2*I*d*x + 2*I 
*c) + d)*log(4*((A - I*B)*a^3*e^(I*d*x + I*c) - sqrt(-(-I*A^2 - 2*A*B + I* 
B^2)*a^5/d^2)*(I*d*e^(2*I*d*x + 2*I*c) - I*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) 
+ 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-I*d 
*x - I*c)/((-I*A - B)*a^2)) - 8*sqrt(2)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^5 
/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*log(4*((A - I*B)*a^3*e^(I*d*x + I*c) - s 
qrt(-(-I*A^2 - 2*A*B + I*B^2)*a^5/d^2)*(-I*d*e^(2*I*d*x + 2*I*c) + I*d)*sq 
rt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d 
*x + 2*I*c) - 1)))*e^(-I*d*x - I*c)/((-I*A - B)*a^2)) - 4*sqrt(2)*((2*A - 
I*B)*a^2*e^(3*I*d*x + 3*I*c) + (2*A + I*B)*a^2*e^(I*d*x + I*c))*sqrt(a/(e^ 
(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I 
*c) - 1)) - sqrt((4*I*A^2 + 20*A*B - 25*I*B^2)*a^5/d^2)*(d*e^(2*I*d*x + 2* 
I*c) + d)*log(-16*(3*(2*I*A + 5*B)*a^3*e^(2*I*d*x + 2*I*c) + (-2*I*A - 5*B 
)*a^3 + 2*sqrt(2)*sqrt((4*I*A^2 + 20*A*B - 25*I*B^2)*a^5/d^2)*(d*e^(3*I*d* 
x + 3*I*c) - d*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I* 
e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/ 
((2*I*A + 5*B)*a)) + sqrt((4*I*A^2 + 20*A*B - 25*I*B^2)*a^5/d^2)*(d*e^(2*I 
*d*x + 2*I*c) + d)*log(-16*(3*(2*I*A + 5*B)*a^3*e^(2*I*d*x + 2*I*c) + (-2* 
I*A - 5*B)*a^3 - 2*sqrt(2)*sqrt((4*I*A^2 + 20*A*B - 25*I*B^2)*a^5/d^2)*(d* 
e^(3*I*d*x + 3*I*c) - d*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + ...
 

Sympy [F(-1)]

Timed out. \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(cot(d*x+c)**(3/2)*(a+I*a*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c)),x)
 

Output:

Timed out
 

Maxima [F(-1)]

Timed out. \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, al 
gorithm="maxima")
 

Output:

Timed out
 

Giac [F(-2)]

Exception generated. \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, al 
gorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2} \,d x \] Input:

int(cot(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(5/2), 
x)
 

Output:

int(cot(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(5/2), 
 x)
 

Reduce [F]

\[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\sqrt {a}\, a^{2} \left (-\left (\int \sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right ) \tan \left (d x +c \right )^{3}d x \right ) b -\left (\int \sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right ) \tan \left (d x +c \right )^{2}d x \right ) a +2 \left (\int \sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right ) \tan \left (d x +c \right )^{2}d x \right ) b i +2 \left (\int \sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right ) \tan \left (d x +c \right )d x \right ) a i +\left (\int \sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right ) \tan \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right )d x \right ) a \right ) \] Input:

int(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x)
 

Output:

sqrt(a)*a**2*( - int(sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x))*cot(c + d 
*x)*tan(c + d*x)**3,x)*b - int(sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x)) 
*cot(c + d*x)*tan(c + d*x)**2,x)*a + 2*int(sqrt(tan(c + d*x)*i + 1)*sqrt(c 
ot(c + d*x))*cot(c + d*x)*tan(c + d*x)**2,x)*b*i + 2*int(sqrt(tan(c + d*x) 
*i + 1)*sqrt(cot(c + d*x))*cot(c + d*x)*tan(c + d*x),x)*a*i + int(sqrt(tan 
(c + d*x)*i + 1)*sqrt(cot(c + d*x))*cot(c + d*x)*tan(c + d*x),x)*b + int(s 
qrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x))*cot(c + d*x),x)*a)