\(\int \sqrt {\cot (c+d x)} (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx\) [580]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 152 \[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx=\frac {(b (A-B)+a (A+B)) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {(b (A-B)+a (A+B)) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {(a (A-B)-b (A+B)) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\cot (c+d x)}}{1+\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {2 b B}{d \sqrt {\cot (c+d x)}} \] Output:

-1/2*(b*(A-B)+a*(A+B))*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))*2^(1/2)/d-1/2*( 
b*(A-B)+a*(A+B))*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))*2^(1/2)/d+1/2*(a*(A-B) 
-b*(A+B))*arctanh(2^(1/2)*cot(d*x+c)^(1/2)/(1+cot(d*x+c)))*2^(1/2)/d+2*b*B 
/d/cot(d*x+c)^(1/2)
 

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.17 \[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx=-\frac {\sqrt {\cot (c+d x)} \left (2 \sqrt {2} (b (A-B)+a (A+B)) \left (\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-\arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )\right )+\sqrt {2} (a (A-B)-b (A+B)) \left (\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )\right )-8 b B \sqrt {\tan (c+d x)}\right ) \sqrt {\tan (c+d x)}}{4 d} \] Input:

Integrate[Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]
 

Output:

-1/4*(Sqrt[Cot[c + d*x]]*(2*Sqrt[2]*(b*(A - B) + a*(A + B))*(ArcTan[1 - Sq 
rt[2]*Sqrt[Tan[c + d*x]]] - ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]) + Sqrt 
[2]*(a*(A - B) - b*(A + B))*(Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + 
d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]) - 8*b*B*Sqrt[T 
an[c + d*x]])*Sqrt[Tan[c + d*x]])/d
 

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.20, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.484, Rules used = {3042, 4064, 3042, 4074, 3042, 4017, 25, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x)) (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 4064

\(\displaystyle \int \frac {(a \cot (c+d x)+b) (A \cot (c+d x)+B)}{\cot ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right ) \left (B-A \tan \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (-\tan \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4074

\(\displaystyle \int \frac {A b+a B+(a A-b B) \cot (c+d x)}{\sqrt {\cot (c+d x)}}dx+\frac {2 b B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A b+a B-(a A-b B) \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {2 \int -\frac {A b+a B+(a A-b B) \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d}+\frac {2 b B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 b B}{d \sqrt {\cot (c+d x)}}-\frac {2 \int \frac {A b+a B+(a A-b B) \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {2 \left (\frac {1}{2} (a (A-B)-b (A+B)) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a (A+B)+b (A-B)) \int \frac {\cot (c+d x)+1}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d}+\frac {2 b B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (\frac {1}{2} (a (A-B)-b (A+B)) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a (A+B)+b (A-B)) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )\right )}{d}+\frac {2 b B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (\frac {1}{2} (a (A-B)-b (A+B)) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a (A+B)+b (A-B)) \left (\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 b B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (\frac {1}{2} (a (A-B)-b (A+B)) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a (A+B)+b (A-B)) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 b B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (\frac {1}{2} (a (A-B)-b (A+B)) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} (a (A+B)+b (A-B)) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 b B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (\frac {1}{2} (a (A-B)-b (A+B)) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} (a (A+B)+b (A-B)) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 b B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\frac {1}{2} (a (A-B)-b (A+B)) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\cot (c+d x)}+1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )-\frac {1}{2} (a (A+B)+b (A-B)) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 b B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (\frac {1}{2} (a (A-B)-b (A+B)) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )-\frac {1}{2} (a (A+B)+b (A-B)) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 b B}{d \sqrt {\cot (c+d x)}}\)

Input:

Int[Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]
 

Output:

(2*b*B)/(d*Sqrt[Cot[c + d*x]]) + (2*(-1/2*((b*(A - B) + a*(A + B))*(-(ArcT 
an[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]) + ArcTan[1 + Sqrt[2]*Sqrt[Cot[ 
c + d*x]]]/Sqrt[2])) + ((a*(A - B) - b*(A + B))*(-1/2*Log[1 - Sqrt[2]*Sqrt 
[Cot[c + d*x]] + Cot[c + d*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x] 
] + Cot[c + d*x]]/(2*Sqrt[2])))/2))/d
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4064
Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(m_.)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp 
[g^(m + n)   Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d + c 
*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !Integer 
Q[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4074
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b 
*c - a*d)*(A*b - a*B)*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 + b^2 
))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[a*A*c 
+ b*B*c + A*b*d - a*B*d - (A*b*c - a*B*c - a*A*d - b*B*d)*Tan[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && LtQ[m 
, -1] && NeQ[a^2 + b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(425\) vs. \(2(133)=266\).

Time = 0.36 (sec) , antiderivative size = 426, normalized size of antiderivative = 2.80

method result size
derivativedivides \(\frac {\sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \sqrt {\tan \left (d x +c \right )}\, \left (A \sqrt {2}\, \ln \left (-\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}-\tan \left (d x +c \right )-1}\right ) a +2 A \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) a +2 A \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) b +2 A \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) a +2 A \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) b +A \sqrt {2}\, \ln \left (-\frac {\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}-\tan \left (d x +c \right )-1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right ) b -B \sqrt {2}\, \ln \left (-\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}-\tan \left (d x +c \right )-1}\right ) b +2 B \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) a -2 B \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) b +2 B \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) a -2 B \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) b +B \sqrt {2}\, \ln \left (-\frac {\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}-\tan \left (d x +c \right )-1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right ) a +8 B b \sqrt {\tan \left (d x +c \right )}\right )}{4 d}\) \(426\)
default \(\frac {\sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \sqrt {\tan \left (d x +c \right )}\, \left (A \sqrt {2}\, \ln \left (-\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}-\tan \left (d x +c \right )-1}\right ) a +2 A \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) a +2 A \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) b +2 A \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) a +2 A \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) b +A \sqrt {2}\, \ln \left (-\frac {\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}-\tan \left (d x +c \right )-1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right ) b -B \sqrt {2}\, \ln \left (-\frac {\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}{\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}-\tan \left (d x +c \right )-1}\right ) b +2 B \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) a -2 B \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) b +2 B \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) a -2 B \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}\right ) b +B \sqrt {2}\, \ln \left (-\frac {\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}-\tan \left (d x +c \right )-1}{\tan \left (d x +c \right )+\sqrt {2}\, \sqrt {\tan \left (d x +c \right )}+1}\right ) a +8 B b \sqrt {\tan \left (d x +c \right )}\right )}{4 d}\) \(426\)

Input:

int(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x,method=_RETURNVER 
BOSE)
 

Output:

1/4/d*(1/tan(d*x+c))^(1/2)*tan(d*x+c)^(1/2)*(A*2^(1/2)*ln(-(tan(d*x+c)+2^( 
1/2)*tan(d*x+c)^(1/2)+1)/(2^(1/2)*tan(d*x+c)^(1/2)-tan(d*x+c)-1))*a+2*A*2^ 
(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*a+2*A*2^(1/2)*arctan(1+2^(1/2)*ta 
n(d*x+c)^(1/2))*b+2*A*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*a+2*A*2^ 
(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*b+A*2^(1/2)*ln(-(2^(1/2)*tan(d*x 
+c)^(1/2)-tan(d*x+c)-1)/(tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1/2)+1))*b-B*2^(1/ 
2)*ln(-(tan(d*x+c)+2^(1/2)*tan(d*x+c)^(1/2)+1)/(2^(1/2)*tan(d*x+c)^(1/2)-t 
an(d*x+c)-1))*b+2*B*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*a-2*B*2^(1/ 
2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*b+2*B*2^(1/2)*arctan(-1+2^(1/2)*tan( 
d*x+c)^(1/2))*a-2*B*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*b+B*2^(1/2 
)*ln(-(2^(1/2)*tan(d*x+c)^(1/2)-tan(d*x+c)-1)/(tan(d*x+c)+2^(1/2)*tan(d*x+ 
c)^(1/2)+1))*a+8*B*b*tan(d*x+c)^(1/2))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 886 vs. \(2 (133) = 266\).

Time = 0.10 (sec) , antiderivative size = 886, normalized size of antiderivative = 5.83 \[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx =\text {Too large to display} \] Input:

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm= 
"fricas")
 

Output:

-1/2*(2*sqrt(1/2)*d*sqrt(((A^2 + 2*A*B + B^2)*a^2 + 2*(A^2 - B^2)*a*b + (A 
^2 - 2*A*B + B^2)*b^2)/d^2)*arctan((2*sqrt(1/2)*((A - B)*a - (A + B)*b)*d* 
sqrt(((A^2 + 2*A*B + B^2)*a^2 + 2*(A^2 - B^2)*a*b + (A^2 - 2*A*B + B^2)*b^ 
2)/d^2)*sqrt(tan(d*x + c)) + d^2*sqrt(((A^2 + 2*A*B + B^2)*a^2 + 2*(A^2 - 
B^2)*a*b + (A^2 - 2*A*B + B^2)*b^2)/d^2)*sqrt(((A^2 - 2*A*B + B^2)*a^2 - 2 
*(A^2 - B^2)*a*b + (A^2 + 2*A*B + B^2)*b^2)/d^2))/(4*A*B*a*b - (A^2 - B^2) 
*a^2 + (A^2 - B^2)*b^2)) + 2*sqrt(1/2)*d*sqrt(((A^2 + 2*A*B + B^2)*a^2 + 2 
*(A^2 - B^2)*a*b + (A^2 - 2*A*B + B^2)*b^2)/d^2)*arctan((2*sqrt(1/2)*((A - 
 B)*a - (A + B)*b)*d*sqrt(((A^2 + 2*A*B + B^2)*a^2 + 2*(A^2 - B^2)*a*b + ( 
A^2 - 2*A*B + B^2)*b^2)/d^2)*sqrt(tan(d*x + c)) - d^2*sqrt(((A^2 + 2*A*B + 
 B^2)*a^2 + 2*(A^2 - B^2)*a*b + (A^2 - 2*A*B + B^2)*b^2)/d^2)*sqrt(((A^2 - 
 2*A*B + B^2)*a^2 - 2*(A^2 - B^2)*a*b + (A^2 + 2*A*B + B^2)*b^2)/d^2))/(4* 
A*B*a*b - (A^2 - B^2)*a^2 + (A^2 - B^2)*b^2)) + sqrt(1/2)*d*sqrt(((A^2 - 2 
*A*B + B^2)*a^2 - 2*(A^2 - B^2)*a*b + (A^2 + 2*A*B + B^2)*b^2)/d^2)*log(2* 
sqrt(1/2)*d*sqrt(((A^2 - 2*A*B + B^2)*a^2 - 2*(A^2 - B^2)*a*b + (A^2 + 2*A 
*B + B^2)*b^2)/d^2)*sqrt(tan(d*x + c)) - (A - B)*a + (A + B)*b - ((A - B)* 
a - (A + B)*b)*tan(d*x + c)) - sqrt(1/2)*d*sqrt(((A^2 - 2*A*B + B^2)*a^2 - 
 2*(A^2 - B^2)*a*b + (A^2 + 2*A*B + B^2)*b^2)/d^2)*log(-2*sqrt(1/2)*d*sqrt 
(((A^2 - 2*A*B + B^2)*a^2 - 2*(A^2 - B^2)*a*b + (A^2 + 2*A*B + B^2)*b^2)/d 
^2)*sqrt(tan(d*x + c)) - (A - B)*a + (A + B)*b - ((A - B)*a - (A + B)*b...
 

Sympy [F]

\[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx=\int \left (A + B \tan {\left (c + d x \right )}\right ) \left (a + b \tan {\left (c + d x \right )}\right ) \sqrt {\cot {\left (c + d x \right )}}\, dx \] Input:

integrate(cot(d*x+c)**(1/2)*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x)
 

Output:

Integral((A + B*tan(c + d*x))*(a + b*tan(c + d*x))*sqrt(cot(c + d*x)), x)
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.17 \[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx=-\frac {2 \, \sqrt {2} {\left ({\left (A + B\right )} a + {\left (A - B\right )} b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left ({\left (A + B\right )} a + {\left (A - B\right )} b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \sqrt {2} {\left ({\left (A - B\right )} a - {\left (A + B\right )} b\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt {2} {\left ({\left (A - B\right )} a - {\left (A + B\right )} b\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - 8 \, B b \sqrt {\tan \left (d x + c\right )}}{4 \, d} \] Input:

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm= 
"maxima")
 

Output:

-1/4*(2*sqrt(2)*((A + B)*a + (A - B)*b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sq 
rt(tan(d*x + c)))) + 2*sqrt(2)*((A + B)*a + (A - B)*b)*arctan(-1/2*sqrt(2) 
*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqrt(2)*((A - B)*a - (A + B)*b)*log(s 
qrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) + sqrt(2)*((A - B)*a - (A 
+ B)*b)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - 8*B*b*sqrt 
(tan(d*x + c)))/d
 

Giac [F]

\[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (b \tan \left (d x + c\right ) + a\right )} \sqrt {\cot \left (d x + c\right )} \,d x } \] Input:

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm= 
"giac")
 

Output:

integrate((B*tan(d*x + c) + A)*(b*tan(d*x + c) + a)*sqrt(cot(d*x + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx=\int \sqrt {\mathrm {cot}\left (c+d\,x\right )}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right ) \,d x \] Input:

int(cot(c + d*x)^(1/2)*(A + B*tan(c + d*x))*(a + b*tan(c + d*x)),x)
 

Output:

int(cot(c + d*x)^(1/2)*(A + B*tan(c + d*x))*(a + b*tan(c + d*x)), x)
 

Reduce [F]

\[ \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx=\left (\int \sqrt {\cot \left (d x +c \right )}d x \right ) a^{2}+\left (\int \sqrt {\cot \left (d x +c \right )}\, \tan \left (d x +c \right )^{2}d x \right ) b^{2}+2 \left (\int \sqrt {\cot \left (d x +c \right )}\, \tan \left (d x +c \right )d x \right ) a b \] Input:

int(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x)
                                                                                    
                                                                                    
 

Output:

int(sqrt(cot(c + d*x)),x)*a**2 + int(sqrt(cot(c + d*x))*tan(c + d*x)**2,x) 
*b**2 + 2*int(sqrt(cot(c + d*x))*tan(c + d*x),x)*a*b