\(\int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))^2} \, dx\) [601]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 317 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))^2} \, dx=\frac {\left (a^2 (A-B)-b^2 (A-B)+2 a b (A+B)\right ) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {\left (a^2 (A-B)-b^2 (A-B)+2 a b (A+B)\right ) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {\left (3 a^2 A b-A b^3-a^3 B+3 a b^2 B\right ) \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{\sqrt {a} \sqrt {b} \left (a^2+b^2\right )^2 d}+\frac {\left (2 a b (A-B)-a^2 (A+B)+b^2 (A+B)\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\cot (c+d x)}}{1+\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{\left (a^2+b^2\right ) d (b+a \cot (c+d x))} \] Output:

-1/2*(a^2*(A-B)-b^2*(A-B)+2*a*b*(A+B))*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2)) 
*2^(1/2)/(a^2+b^2)^2/d-1/2*(a^2*(A-B)-b^2*(A-B)+2*a*b*(A+B))*arctan(1+2^(1 
/2)*cot(d*x+c)^(1/2))*2^(1/2)/(a^2+b^2)^2/d+(3*A*a^2*b-A*b^3-B*a^3+3*B*a*b 
^2)*arctan(a^(1/2)*cot(d*x+c)^(1/2)/b^(1/2))/a^(1/2)/b^(1/2)/(a^2+b^2)^2/d 
+1/2*(2*a*b*(A-B)-a^2*(A+B)+b^2*(A+B))*arctanh(2^(1/2)*cot(d*x+c)^(1/2)/(1 
+cot(d*x+c)))*2^(1/2)/(a^2+b^2)^2/d-(A*b-B*a)*cot(d*x+c)^(1/2)/(a^2+b^2)/d 
/(b+a*cot(d*x+c))
 

Mathematica [A] (verified)

Time = 1.85 (sec) , antiderivative size = 336, normalized size of antiderivative = 1.06 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))^2} \, dx=-\frac {\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (2 \sqrt {2} \left (a^2 (A-B)+b^2 (-A+B)+2 a b (A+B)\right ) \left (\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-\arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )\right )-\frac {4 \left (a^2+b^2\right ) (-A b+a B) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {b}}+\frac {8 \sqrt {b} \left (a^2 A-A b^2+2 a b B\right ) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a}}+\sqrt {2} \left (2 a b (A-B)-a^2 (A+B)+b^2 (A+B)\right ) \left (\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )\right )-\frac {4 \left (a^2+b^2\right ) (-A b+a B) \sqrt {\tan (c+d x)}}{a+b \tan (c+d x)}\right )}{4 \left (a^2+b^2\right )^2 d} \] Input:

Integrate[(A + B*Tan[c + d*x])/(Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x])^2) 
,x]
 

Output:

-1/4*(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(2*Sqrt[2]*(a^2*(A - B) + b^2* 
(-A + B) + 2*a*b*(A + B))*(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - ArcTan 
[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]) - (4*(a^2 + b^2)*(-(A*b) + a*B)*ArcTan[( 
Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/(Sqrt[a]*Sqrt[b]) + (8*Sqrt[b]*(a^2* 
A - A*b^2 + 2*a*b*B)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/Sqrt[a] 
 + Sqrt[2]*(2*a*b*(A - B) - a^2*(A + B) + b^2*(A + B))*(Log[1 - Sqrt[2]*Sq 
rt[Tan[c + d*x]] + Tan[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Ta 
n[c + d*x]]) - (4*(a^2 + b^2)*(-(A*b) + a*B)*Sqrt[Tan[c + d*x]])/(a + b*Ta 
n[c + d*x])))/((a^2 + b^2)^2*d)
 

Rubi [A] (warning: unable to verify)

Time = 2.69 (sec) , antiderivative size = 330, normalized size of antiderivative = 1.04, number of steps used = 24, number of rules used = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.697, Rules used = {3042, 4064, 3042, 4091, 27, 3042, 4136, 27, 3042, 4017, 25, 27, 1482, 1476, 1082, 217, 1479, 25, 27, 1103, 4117, 73, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))^2}dx\)

\(\Big \downarrow \) 4064

\(\displaystyle \int \frac {\sqrt {\cot (c+d x)} (A \cot (c+d x)+B)}{(a \cot (c+d x)+b)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (B-A \tan \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 4091

\(\displaystyle \frac {\int -\frac {-a (A b-a B) \cot ^2(c+d x)-2 a (a A+b B) \cot (c+d x)+a (A b-a B)}{2 \sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {-a (A b-a B) \cot ^2(c+d x)-2 a (a A+b B) \cot (c+d x)+a (A b-a B)}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {-a (A b-a B) \tan \left (c+d x+\frac {\pi }{2}\right )^2+2 a (a A+b B) \tan \left (c+d x+\frac {\pi }{2}\right )+a (A b-a B)}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 4136

\(\displaystyle -\frac {\frac {\int -\frac {2 \left (a \left (A a^2+2 b B a-A b^2\right )+a \left (-B a^2+2 A b a+b^2 B\right ) \cot (c+d x)\right )}{\sqrt {\cot (c+d x)}}dx}{a^2+b^2}+\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {\cot ^2(c+d x)+1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{a^2+b^2}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {\cot ^2(c+d x)+1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{a^2+b^2}-\frac {2 \int \frac {a \left (A a^2+2 b B a-A b^2\right )+a \left (-B a^2+2 A b a+b^2 B\right ) \cot (c+d x)}{\sqrt {\cot (c+d x)}}dx}{a^2+b^2}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {2 \int \frac {a \left (A a^2+2 b B a-A b^2\right )-a \left (-B a^2+2 A b a+b^2 B\right ) \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2+b^2}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 4017

\(\displaystyle -\frac {\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 \int -\frac {a \left (A a^2+2 b B a-A b^2+\left (-B a^2+2 A b a+b^2 B\right ) \cot (c+d x)\right )}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {4 \int \frac {a \left (A a^2+2 b B a-A b^2+\left (-B a^2+2 A b a+b^2 B\right ) \cot (c+d x)\right )}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}+\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {4 a \int \frac {A a^2+2 b B a-A b^2+\left (-B a^2+2 A b a+b^2 B\right ) \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}+\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 1482

\(\displaystyle -\frac {\frac {4 a \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \int \frac {\cot (c+d x)+1}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d \left (a^2+b^2\right )}+\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {\frac {4 a \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )-\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d \left (a^2+b^2\right )}+\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {\frac {4 a \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}\right )-\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d \left (a^2+b^2\right )}+\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {\frac {4 a \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d \left (a^2+b^2\right )}+\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {\frac {4 a \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {4 a \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {4 a \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\cot (c+d x)}+1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )\right )}{d \left (a^2+b^2\right )}+\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}+\frac {4 a \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 4117

\(\displaystyle -\frac {\frac {a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}d(-\cot (c+d x))}{d \left (a^2+b^2\right )}+\frac {4 a \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {\frac {4 a \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {2 a \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \int \frac {1}{a \cot ^2(c+d x)+b}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}}{2 a \left (a^2+b^2\right )}-\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {(A b-a B) \sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}-\frac {\frac {4 a \left (\frac {1}{2} \left (a^2 (A-B)+2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} \left (-\left (a^2 (A+B)\right )+2 a b (A-B)+b^2 (A+B)\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {2 \sqrt {a} \left (a^3 (-B)+3 a^2 A b+3 a b^2 B-A b^3\right ) \arctan \left (\frac {\sqrt {a} \cot (c+d x)}{\sqrt {b}}\right )}{\sqrt {b} d \left (a^2+b^2\right )}}{2 a \left (a^2+b^2\right )}\)

Input:

Int[(A + B*Tan[c + d*x])/(Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x])^2),x]
 

Output:

-(((A*b - a*B)*Sqrt[Cot[c + d*x]])/((a^2 + b^2)*d*(b + a*Cot[c + d*x]))) - 
 ((2*Sqrt[a]*(3*a^2*A*b - A*b^3 - a^3*B + 3*a*b^2*B)*ArcTan[(Sqrt[a]*Cot[c 
 + d*x])/Sqrt[b]])/(Sqrt[b]*(a^2 + b^2)*d) + (4*a*(((a^2*(A - B) - b^2*(A 
- B) + 2*a*b*(A + B))*(-(ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]) + 
 ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]))/2 - ((2*a*b*(A - B) - a^ 
2*(A + B) + b^2*(A + B))*(-1/2*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c 
+ d*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]/(2*Sq 
rt[2])))/2))/((a^2 + b^2)*d))/(2*a*(a^2 + b^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4064
Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(m_.)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp 
[g^(m + n)   Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d + c 
*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !Integer 
Q[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4091
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^n/(f*(m + 
 1)*(a^2 + b^2))), x] + Simp[1/(b*(m + 1)*(a^2 + b^2))   Int[(a + b*Tan[e + 
 f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[b*B*(b*c*(m + 1) + a*d*n) 
+ A*b*(a*c*(m + 1) - b*d*n) - b*(A*(b*c - a*d) - B*(a*c + b*d))*(m + 1)*Tan 
[e + f*x] - b*d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x]^2, x], x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && 
NeQ[c^2 + d^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && (IntegerQ[m] || Integers 
Q[2*m, 2*n])
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4136
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^ 
n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[ 
(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*((1 + Tan[ 
e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, 
 C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] & 
&  !GtQ[n, 0] &&  !LeQ[n, -1]
 
Maple [A] (verified)

Time = 0.42 (sec) , antiderivative size = 332, normalized size of antiderivative = 1.05

method result size
derivativedivides \(\frac {\frac {\frac {2 \left (-\frac {1}{2} A \,a^{2} b -\frac {1}{2} A \,b^{3}+\frac {1}{2} B \,a^{3}+\frac {1}{2} B a \,b^{2}\right ) \sqrt {\cot \left (d x +c \right )}}{b +a \cot \left (d x +c \right )}+\frac {\left (3 A \,a^{2} b -A \,b^{3}-B \,a^{3}+3 B a \,b^{2}\right ) \arctan \left (\frac {a \sqrt {\cot \left (d x +c \right )}}{\sqrt {a b}}\right )}{\sqrt {a b}}}{\left (a^{2}+b^{2}\right )^{2}}-\frac {2 \left (\frac {\left (A \,a^{2}-A \,b^{2}+2 B a b \right ) \sqrt {2}\, \left (\ln \left (\frac {\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}{\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}+\frac {\left (2 a b A -B \,a^{2}+B \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}{\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}\right )}{\left (a^{2}+b^{2}\right )^{2}}}{d}\) \(332\)
default \(\frac {\frac {\frac {2 \left (-\frac {1}{2} A \,a^{2} b -\frac {1}{2} A \,b^{3}+\frac {1}{2} B \,a^{3}+\frac {1}{2} B a \,b^{2}\right ) \sqrt {\cot \left (d x +c \right )}}{b +a \cot \left (d x +c \right )}+\frac {\left (3 A \,a^{2} b -A \,b^{3}-B \,a^{3}+3 B a \,b^{2}\right ) \arctan \left (\frac {a \sqrt {\cot \left (d x +c \right )}}{\sqrt {a b}}\right )}{\sqrt {a b}}}{\left (a^{2}+b^{2}\right )^{2}}-\frac {2 \left (\frac {\left (A \,a^{2}-A \,b^{2}+2 B a b \right ) \sqrt {2}\, \left (\ln \left (\frac {\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}{\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}+\frac {\left (2 a b A -B \,a^{2}+B \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}{\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}\right )}{\left (a^{2}+b^{2}\right )^{2}}}{d}\) \(332\)

Input:

int((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^2,x,method=_RETURNV 
ERBOSE)
 

Output:

1/d*(2/(a^2+b^2)^2*((-1/2*A*a^2*b-1/2*A*b^3+1/2*B*a^3+1/2*B*a*b^2)*cot(d*x 
+c)^(1/2)/(b+a*cot(d*x+c))+1/2*(3*A*a^2*b-A*b^3-B*a^3+3*B*a*b^2)/(a*b)^(1/ 
2)*arctan(a*cot(d*x+c)^(1/2)/(a*b)^(1/2)))-2/(a^2+b^2)^2*(1/8*(A*a^2-A*b^2 
+2*B*a*b)*2^(1/2)*(ln((cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2)+1)/(cot(d*x+c)- 
2^(1/2)*cot(d*x+c)^(1/2)+1))+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan 
(-1+2^(1/2)*cot(d*x+c)^(1/2)))+1/8*(2*A*a*b-B*a^2+B*b^2)*2^(1/2)*(ln((cot( 
d*x+c)-2^(1/2)*cot(d*x+c)^(1/2)+1)/(cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2)+1) 
)+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2 
)))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2395 vs. \(2 (286) = 572\).

Time = 13.48 (sec) , antiderivative size = 4816, normalized size of antiderivative = 15.19 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))^2} \, dx=\text {Too large to display} \] Input:

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^2,x, algorith 
m="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))^2} \, dx=\int \frac {A + B \tan {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{2} \sqrt {\cot {\left (c + d x \right )}}}\, dx \] Input:

integrate((A+B*tan(d*x+c))/cot(d*x+c)**(1/2)/(a+b*tan(d*x+c))**2,x)
 

Output:

Integral((A + B*tan(c + d*x))/((a + b*tan(c + d*x))**2*sqrt(cot(c + d*x))) 
, x)
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 347, normalized size of antiderivative = 1.09 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))^2} \, dx=-\frac {\frac {4 \, {\left (B a^{3} - 3 \, A a^{2} b - 3 \, B a b^{2} + A b^{3}\right )} \arctan \left (\frac {a}{\sqrt {a b} \sqrt {\tan \left (d x + c\right )}}\right )}{{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a b}} + \frac {2 \, \sqrt {2} {\left ({\left (A - B\right )} a^{2} + 2 \, {\left (A + B\right )} a b - {\left (A - B\right )} b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left ({\left (A - B\right )} a^{2} + 2 \, {\left (A + B\right )} a b - {\left (A - B\right )} b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} {\left ({\left (A + B\right )} a^{2} - 2 \, {\left (A - B\right )} a b - {\left (A + B\right )} b^{2}\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt {2} {\left ({\left (A + B\right )} a^{2} - 2 \, {\left (A - B\right )} a b - {\left (A + B\right )} b^{2}\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a^{4} + 2 \, a^{2} b^{2} + b^{4}} - \frac {4 \, {\left (B a - A b\right )}}{{\left (a^{2} b + b^{3} + \frac {a^{3} + a b^{2}}{\tan \left (d x + c\right )}\right )} \sqrt {\tan \left (d x + c\right )}}}{4 \, d} \] Input:

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^2,x, algorith 
m="maxima")
 

Output:

-1/4*(4*(B*a^3 - 3*A*a^2*b - 3*B*a*b^2 + A*b^3)*arctan(a/(sqrt(a*b)*sqrt(t 
an(d*x + c))))/((a^4 + 2*a^2*b^2 + b^4)*sqrt(a*b)) + (2*sqrt(2)*((A - B)*a 
^2 + 2*(A + B)*a*b - (A - B)*b^2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan 
(d*x + c)))) + 2*sqrt(2)*((A - B)*a^2 + 2*(A + B)*a*b - (A - B)*b^2)*arcta 
n(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) + sqrt(2)*((A + B)*a^2 - 
2*(A - B)*a*b - (A + B)*b^2)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + 
c) + 1) - sqrt(2)*((A + B)*a^2 - 2*(A - B)*a*b - (A + B)*b^2)*log(-sqrt(2) 
/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))/(a^4 + 2*a^2*b^2 + b^4) - 4*(B* 
a - A*b)/((a^2*b + b^3 + (a^3 + a*b^2)/tan(d*x + c))*sqrt(tan(d*x + c))))/ 
d
 

Giac [F]

\[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))^2} \, dx=\int { \frac {B \tan \left (d x + c\right ) + A}{{\left (b \tan \left (d x + c\right ) + a\right )}^{2} \sqrt {\cot \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^2,x, algorith 
m="giac")
 

Output:

integrate((B*tan(d*x + c) + A)/((b*tan(d*x + c) + a)^2*sqrt(cot(d*x + c))) 
, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))^2} \, dx=\int \frac {A+B\,\mathrm {tan}\left (c+d\,x\right )}{\sqrt {\mathrm {cot}\left (c+d\,x\right )}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^2} \,d x \] Input:

int((A + B*tan(c + d*x))/(cot(c + d*x)^(1/2)*(a + b*tan(c + d*x))^2),x)
 

Output:

int((A + B*tan(c + d*x))/(cot(c + d*x)^(1/2)*(a + b*tan(c + d*x))^2), x)
 

Reduce [F]

\[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))^2} \, dx=\int \frac {\sqrt {\cot \left (d x +c \right )}}{\cot \left (d x +c \right ) \tan \left (d x +c \right ) b +\cot \left (d x +c \right ) a}d x \] Input:

int((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^2,x)
 

Output:

int(sqrt(cot(c + d*x))/(cot(c + d*x)*tan(c + d*x)*b + cot(c + d*x)*a),x)