\(\int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx\) [645]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 266 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=-\frac {(A+i B) \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {i a-b} d}+\frac {(2 A b-a B) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{b^{3/2} d}-\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {i a+b} d}+\frac {B \sqrt {a+b \tan (c+d x)}}{b d \sqrt {\cot (c+d x)}} \] Output:

-(A+I*B)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot 
(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a-b)^(1/2)/d+(2*A*b-B*a)*arctanh(b^(1/2) 
*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2 
)/b^(3/2)/d-(A-I*B)*arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c) 
)^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a+b)^(1/2)/d+B*(a+b*tan(d*x+ 
c))^(1/2)/b/d/cot(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.69 (sec) , antiderivative size = 354, normalized size of antiderivative = 1.33 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\frac {\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (-\sqrt {a} \sqrt {-a+i b} \sqrt {a+i b} (-2 A b+a B) \text {arcsinh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+\frac {b \tan (c+d x)}{a}}+\sqrt {b} \left (\sqrt [4]{-1} \sqrt {a+i b} b (i A+B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {a+b \tan (c+d x)}+\sqrt {-a+i b} \left ((-1)^{3/4} b (A+i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {a+b \tan (c+d x)}+\sqrt {a+i b} B \sqrt {\tan (c+d x)} (a+b \tan (c+d x))\right )\right )\right )}{\sqrt {-a+i b} \sqrt {a+i b} b^{3/2} d \sqrt {a+b \tan (c+d x)}} \] Input:

Integrate[(A + B*Tan[c + d*x])/(Cot[c + d*x]^(3/2)*Sqrt[a + b*Tan[c + d*x] 
]),x]
 

Output:

(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-(Sqrt[a]*Sqrt[-a + I*b]*Sqrt[a + 
I*b]*(-2*A*b + a*B)*ArcSinh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]]*Sqrt[1 + 
 (b*Tan[c + d*x])/a]) + Sqrt[b]*((-1)^(1/4)*Sqrt[a + I*b]*b*(I*A + B)*ArcT 
an[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]] 
]*Sqrt[a + b*Tan[c + d*x]] + Sqrt[-a + I*b]*((-1)^(3/4)*b*(A + I*B)*ArcTan 
[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*S 
qrt[a + b*Tan[c + d*x]] + Sqrt[a + I*b]*B*Sqrt[Tan[c + d*x]]*(a + b*Tan[c 
+ d*x])))))/(Sqrt[-a + I*b]*Sqrt[a + I*b]*b^(3/2)*d*Sqrt[a + b*Tan[c + d*x 
]])
 

Rubi [A] (verified)

Time = 1.89 (sec) , antiderivative size = 228, normalized size of antiderivative = 0.86, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 4729, 3042, 4090, 27, 3042, 4138, 2035, 2257, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\cot (c+d x)^{3/2} \sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\tan ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\tan (c+d x)^{3/2} (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4090

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int -\frac {-\left ((2 A b-a B) \tan ^2(c+d x)\right )+2 b B \tan (c+d x)+a B}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{b}+\frac {B \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{b d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{b d}-\frac {\int \frac {-\left ((2 A b-a B) \tan ^2(c+d x)\right )+2 b B \tan (c+d x)+a B}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{2 b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{b d}-\frac {\int \frac {-\left ((2 A b-a B) \tan (c+d x)^2\right )+2 b B \tan (c+d x)+a B}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{2 b}\right )\)

\(\Big \downarrow \) 4138

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{b d}-\frac {\int \frac {-\left ((2 A b-a B) \tan ^2(c+d x)\right )+2 b B \tan (c+d x)+a B}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )}d\tan (c+d x)}{2 b d}\right )\)

\(\Big \downarrow \) 2035

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{b d}-\frac {\int \frac {-\left ((2 A b-a B) \tan ^2(c+d x)\right )+2 b B \tan (c+d x)+a B}{\sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )}d\sqrt {\tan (c+d x)}}{b d}\right )\)

\(\Big \downarrow \) 2257

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{b d}-\frac {\int \left (\frac {a B-2 A b}{\sqrt {a+b \tan (c+d x)}}+\frac {2 (A b+B \tan (c+d x) b)}{\sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )}\right )d\sqrt {\tan (c+d x)}}{b d}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}{b d}-\frac {\frac {b (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {-b+i a}}-\frac {(2 A b-a B) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {b}}+\frac {b (A-i B) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {b+i a}}}{b d}\right )\)

Input:

Int[(A + B*Tan[c + d*x])/(Cot[c + d*x]^(3/2)*Sqrt[a + b*Tan[c + d*x]]),x]
 

Output:

Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-(((b*(A + I*B)*ArcTan[(Sqrt[I*a - 
b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[I*a - b] - ((2*A*b 
- a*B)*ArcTanh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqr 
t[b] + (b*(A - I*B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b* 
Tan[c + d*x]]])/Sqrt[I*a + b])/(b*d)) + (B*Sqrt[Tan[c + d*x]]*Sqrt[a + b*T 
an[c + d*x]])/(b*d))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2257
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol 
] :> Int[ExpandIntegrand[Px*(d + e*x^2)^q*(a + c*x^4)^p, x], x] /; FreeQ[{a 
, c, d, e, q}, x] && PolyQ[Px, x] && IntegerQ[p]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4090
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + 
 n))), x] + Simp[1/(d*(m + n))   Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Ta 
n[e + f*x])^n*Simp[a^2*A*d*(m + n) - b*B*(b*c*(m - 1) + a*d*(n + 1)) + d*(m 
 + n)*(2*a*A*b + B*(a^2 - b^2))*Tan[e + f*x] - (b*B*(b*c - a*d)*(m - 1) - b 
*(A*b + a*B)*d*(m + n))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, 
 f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2 
, 0] && GtQ[m, 1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 1] 
&& ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4138
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, S 
imp[ff/f   Subst[Int[(a + b*ff*x)^m*(c + d*ff*x)^n*((A + B*ff*x + C*ff^2*x^ 
2)/(1 + ff^2*x^2)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f 
, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + 
 d^2, 0]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 1.27 (sec) , antiderivative size = 1888591, normalized size of antiderivative = 7099.97

\[\text {output too large to display}\]

Input:

int((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(1/2),x)
 

Output:

result too large to display
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 10269 vs. \(2 (214) = 428\).

Time = 4.86 (sec) , antiderivative size = 20571, normalized size of antiderivative = 77.33 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(1/2),x, algo 
rithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {A + B \tan {\left (c + d x \right )}}{\sqrt {a + b \tan {\left (c + d x \right )}} \cot ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((A+B*tan(d*x+c))/cot(d*x+c)**(3/2)/(a+b*tan(d*x+c))**(1/2),x)
 

Output:

Integral((A + B*tan(c + d*x))/(sqrt(a + b*tan(c + d*x))*cot(c + d*x)**(3/2 
)), x)
 

Maxima [F]

\[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\int { \frac {B \tan \left (d x + c\right ) + A}{\sqrt {b \tan \left (d x + c\right ) + a} \cot \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(1/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*tan(d*x + c) + A)/(sqrt(b*tan(d*x + c) + a)*cot(d*x + c)^(3/2 
)), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(1/2),x, algo 
rithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {A+B\,\mathrm {tan}\left (c+d\,x\right )}{{\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}} \,d x \] Input:

int((A + B*tan(c + d*x))/(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))^(1/2)),x 
)
 

Output:

int((A + B*tan(c + d*x))/(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))^(1/2)), 
x)
 

Reduce [F]

\[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {\sqrt {a +\tan \left (d x +c \right ) b}\, \sqrt {\cot \left (d x +c \right )}}{\cot \left (d x +c \right )^{2}}d x \] Input:

int((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(1/2),x)
 

Output:

int((sqrt(tan(c + d*x)*b + a)*sqrt(cot(c + d*x)))/cot(c + d*x)**2,x)