\(\int \cot ^3(e+f x) (a+b \tan ^2(e+f x))^{3/2} \, dx\) [310]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [B] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 116 \[ \int \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\frac {\sqrt {a} (2 a-3 b) \text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a}}\right )}{2 f}-\frac {(a-b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{f}-\frac {a \cot ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f} \] Output:

1/2*a^(1/2)*(2*a-3*b)*arctanh((a+b*tan(f*x+e)^2)^(1/2)/a^(1/2))/f-(a-b)^(3 
/2)*arctanh((a+b*tan(f*x+e)^2)^(1/2)/(a-b)^(1/2))/f-1/2*a*cot(f*x+e)^2*(a+ 
b*tan(f*x+e)^2)^(1/2)/f
 

Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.94 \[ \int \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\frac {\sqrt {a} (2 a-3 b) \text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a}}\right )-2 (a-b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )-a \cot ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f} \] Input:

Integrate[Cot[e + f*x]^3*(a + b*Tan[e + f*x]^2)^(3/2),x]
 

Output:

(Sqrt[a]*(2*a - 3*b)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]] - 2*(a - 
b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a - b]] - a*Cot[e + f*x]^ 
2*Sqrt[a + b*Tan[e + f*x]^2])/(2*f)
 

Rubi [A] (warning: unable to verify)

Time = 0.57 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.97, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4153, 354, 109, 27, 174, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \tan (e+f x)^2\right )^{3/2}}{\tan (e+f x)^3}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle \frac {\int \frac {\cot ^3(e+f x) \left (b \tan ^2(e+f x)+a\right )^{3/2}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {\int \frac {\cot ^2(e+f x) \left (b \tan ^2(e+f x)+a\right )^{3/2}}{\tan ^2(e+f x)+1}d\tan ^2(e+f x)}{2 f}\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {-\int \frac {\cot (e+f x) \left ((a-2 b) b \tan ^2(e+f x)+a (2 a-3 b)\right )}{2 \left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan ^2(e+f x)-a \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {1}{2} \int \frac {\cot (e+f x) \left ((a-2 b) b \tan ^2(e+f x)+a (2 a-3 b)\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan ^2(e+f x)-a \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {\frac {1}{2} \left (2 (a-b)^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan ^2(e+f x)-a (2 a-3 b) \int \frac {\cot (e+f x)}{\sqrt {b \tan ^2(e+f x)+a}}d\tan ^2(e+f x)\right )-a \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\frac {1}{2} \left (\frac {4 (a-b)^2 \int \frac {1}{\frac {\tan ^4(e+f x)}{b}-\frac {a}{b}+1}d\sqrt {b \tan ^2(e+f x)+a}}{b}-\frac {2 a (2 a-3 b) \int \frac {1}{\frac {\tan ^4(e+f x)}{b}-\frac {a}{b}}d\sqrt {b \tan ^2(e+f x)+a}}{b}\right )-a \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {1}{2} \left (2 \sqrt {a} (2 a-3 b) \text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a}}\right )-4 (a-b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )\right )-a \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}\)

Input:

Int[Cot[e + f*x]^3*(a + b*Tan[e + f*x]^2)^(3/2),x]
 

Output:

((2*Sqrt[a]*(2*a - 3*b)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]] - 4*(a 
 - b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a - b]])/2 - a*Cot[e + 
 f*x]*Sqrt[a + b*Tan[e + f*x]^2])/(2*f)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1079\) vs. \(2(98)=196\).

Time = 6.67 (sec) , antiderivative size = 1080, normalized size of antiderivative = 9.31

method result size
default \(\text {Expression too large to display}\) \(1080\)

Input:

int(cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/4/f/(a-b)^(1/2)*((8*cos(f*x+e)-8)*ln(4*(a-b)^(1/2)*((a*cos(f*x+e)^2+b*s 
in(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)+4*(a-b)^(1/2)*((a*cos(f*x+ 
e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)+4*a*cos(f*x+e)-4*cos(f*x+e)*b 
)*a*b+(3*cos(f*x+e)-3)*a^(1/2)*b*ln(2/a^(1/2)*(a^(1/2)*((a*cos(f*x+e)^2+b* 
sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)+((a*cos(f*x+e)^2+b*sin(f* 
x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-a*cos(f*x+e)+cos(f*x+e)*b+b)/(cos( 
f*x+e)+1))*(a-b)^(1/2)+(-3*cos(f*x+e)+3)*a^(1/2)*ln(2*(2*((a*cos(f*x+e)^2+ 
b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)*sin(f*x+e)^2+a*sin(f*x+e)^ 
2-a*cos(f*x+e)^2+2*b*cos(f*x+e)^2+2*a*cos(f*x+e)-4*cos(f*x+e)*b-a+2*b)/(co 
s(f*x+e)-1)^2)*b*(a-b)^(1/2)+(2-2*cos(f*x+e))*a^(3/2)*ln(2/a^(1/2)*(a^(1/2 
)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)+((a* 
cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-a*cos(f*x+e)+ 
cos(f*x+e)*b+b)/(cos(f*x+e)+1))*(a-b)^(1/2)+(-4*cos(f*x+e)+4)*a^2*ln(4*(a- 
b)^(1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+ 
e)+4*(a-b)^(1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)+ 
4*a*cos(f*x+e)-4*cos(f*x+e)*b)+(-4*cos(f*x+e)+4)*ln(4*(a-b)^(1/2)*((a*cos( 
f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)+4*(a-b)^(1/2)* 
((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)+4*a*cos(f*x+e)-4* 
cos(f*x+e)*b)*b^2+(2*cos(f*x+e)-2)*a^(3/2)*ln(2*(2*((a*cos(f*x+e)^2+b*sin( 
f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)*sin(f*x+e)^2+a*sin(f*x+e)^2-a...
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 563, normalized size of antiderivative = 4.85 \[ \int \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\left [-\frac {2 \, {\left (a - b\right )}^{\frac {3}{2}} \log \left (\frac {b \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a - b} + 2 \, a - b}{\tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right )^{2} + {\left (2 \, a - 3 \, b\right )} \sqrt {a} \log \left (\frac {b \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a} + 2 \, a}{\tan \left (f x + e\right )^{2}}\right ) \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} a}{4 \, f \tan \left (f x + e\right )^{2}}, \frac {4 \, {\left (a - b\right )} \sqrt {-a + b} \arctan \left (\frac {\sqrt {-a + b}}{\sqrt {b \tan \left (f x + e\right )^{2} + a}}\right ) \tan \left (f x + e\right )^{2} - {\left (2 \, a - 3 \, b\right )} \sqrt {a} \log \left (\frac {b \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a} + 2 \, a}{\tan \left (f x + e\right )^{2}}\right ) \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} a}{4 \, f \tan \left (f x + e\right )^{2}}, -\frac {\sqrt {-a} {\left (2 \, a - 3 \, b\right )} \arctan \left (\frac {\sqrt {-a}}{\sqrt {b \tan \left (f x + e\right )^{2} + a}}\right ) \tan \left (f x + e\right )^{2} + {\left (a - b\right )}^{\frac {3}{2}} \log \left (\frac {b \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a - b} + 2 \, a - b}{\tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right )^{2} + \sqrt {b \tan \left (f x + e\right )^{2} + a} a}{2 \, f \tan \left (f x + e\right )^{2}}, -\frac {\sqrt {-a} {\left (2 \, a - 3 \, b\right )} \arctan \left (\frac {\sqrt {-a}}{\sqrt {b \tan \left (f x + e\right )^{2} + a}}\right ) \tan \left (f x + e\right )^{2} - 2 \, {\left (a - b\right )} \sqrt {-a + b} \arctan \left (\frac {\sqrt {-a + b}}{\sqrt {b \tan \left (f x + e\right )^{2} + a}}\right ) \tan \left (f x + e\right )^{2} + \sqrt {b \tan \left (f x + e\right )^{2} + a} a}{2 \, f \tan \left (f x + e\right )^{2}}\right ] \] Input:

integrate(cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")
 

Output:

[-1/4*(2*(a - b)^(3/2)*log((b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a 
)*sqrt(a - b) + 2*a - b)/(tan(f*x + e)^2 + 1))*tan(f*x + e)^2 + (2*a - 3*b 
)*sqrt(a)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a) + 2 
*a)/tan(f*x + e)^2)*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*a)/(f*ta 
n(f*x + e)^2), 1/4*(4*(a - b)*sqrt(-a + b)*arctan(sqrt(-a + b)/sqrt(b*tan( 
f*x + e)^2 + a))*tan(f*x + e)^2 - (2*a - 3*b)*sqrt(a)*log((b*tan(f*x + e)^ 
2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2)*tan(f*x + 
e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*a)/(f*tan(f*x + e)^2), -1/2*(sqrt(-a)* 
(2*a - 3*b)*arctan(sqrt(-a)/sqrt(b*tan(f*x + e)^2 + a))*tan(f*x + e)^2 + ( 
a - b)^(3/2)*log((b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - 
 b) + 2*a - b)/(tan(f*x + e)^2 + 1))*tan(f*x + e)^2 + sqrt(b*tan(f*x + e)^ 
2 + a)*a)/(f*tan(f*x + e)^2), -1/2*(sqrt(-a)*(2*a - 3*b)*arctan(sqrt(-a)/s 
qrt(b*tan(f*x + e)^2 + a))*tan(f*x + e)^2 - 2*(a - b)*sqrt(-a + b)*arctan( 
sqrt(-a + b)/sqrt(b*tan(f*x + e)^2 + a))*tan(f*x + e)^2 + sqrt(b*tan(f*x + 
 e)^2 + a)*a)/(f*tan(f*x + e)^2)]
 

Sympy [F]

\[ \int \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int \left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}} \cot ^{3}{\left (e + f x \right )}\, dx \] Input:

integrate(cot(f*x+e)**3*(a+b*tan(f*x+e)**2)**(3/2),x)
 

Output:

Integral((a + b*tan(e + f*x)**2)**(3/2)*cot(e + f*x)**3, x)
 

Maxima [F]

\[ \int \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cot \left (f x + e\right )^{3} \,d x } \] Input:

integrate(cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")
 

Output:

integrate((b*tan(f*x + e)^2 + a)^(3/2)*cot(f*x + e)^3, x)
 

Giac [F(-2)]

Exception generated. \[ \int \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [B] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 447, normalized size of antiderivative = 3.85 \[ \int \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\frac {\mathrm {atanh}\left (\frac {3\,a^2\,b^4\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}\,\sqrt {a^3-3\,a^2\,b+3\,a\,b^2-b^3}}{2\,\left (-\frac {3\,a^4\,b^4}{2}+5\,a^3\,b^5-\frac {11\,a^2\,b^6}{2}+2\,a\,b^7\right )}-\frac {2\,a\,b^5\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}\,\sqrt {a^3-3\,a^2\,b+3\,a\,b^2-b^3}}{-\frac {3\,a^4\,b^4}{2}+5\,a^3\,b^5-\frac {11\,a^2\,b^6}{2}+2\,a\,b^7}\right )\,\sqrt {{\left (a-b\right )}^3}}{f}+\frac {\sqrt {a}\,\mathrm {atanh}\left (\frac {3\,\sqrt {a}\,b^7\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{-\frac {3\,a^4\,b^4}{2}+\frac {23\,a^3\,b^5}{4}-\frac {29\,a^2\,b^6}{4}+3\,a\,b^7}-\frac {29\,a^{3/2}\,b^6\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{4\,\left (-\frac {3\,a^4\,b^4}{2}+\frac {23\,a^3\,b^5}{4}-\frac {29\,a^2\,b^6}{4}+3\,a\,b^7\right )}+\frac {23\,a^{5/2}\,b^5\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{4\,\left (-\frac {3\,a^4\,b^4}{2}+\frac {23\,a^3\,b^5}{4}-\frac {29\,a^2\,b^6}{4}+3\,a\,b^7\right )}-\frac {3\,a^{7/2}\,b^4\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{2\,\left (-\frac {3\,a^4\,b^4}{2}+\frac {23\,a^3\,b^5}{4}-\frac {29\,a^2\,b^6}{4}+3\,a\,b^7\right )}\right )\,\left (2\,a-3\,b\right )}{2\,f}-\frac {a\,b\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{2\,\left (f\,\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )-a\,f\right )} \] Input:

int(cot(e + f*x)^3*(a + b*tan(e + f*x)^2)^(3/2),x)
 

Output:

(atanh((3*a^2*b^4*(a + b*tan(e + f*x)^2)^(1/2)*(3*a*b^2 - 3*a^2*b + a^3 - 
b^3)^(1/2))/(2*(2*a*b^7 - (11*a^2*b^6)/2 + 5*a^3*b^5 - (3*a^4*b^4)/2)) - ( 
2*a*b^5*(a + b*tan(e + f*x)^2)^(1/2)*(3*a*b^2 - 3*a^2*b + a^3 - b^3)^(1/2) 
)/(2*a*b^7 - (11*a^2*b^6)/2 + 5*a^3*b^5 - (3*a^4*b^4)/2))*((a - b)^3)^(1/2 
))/f + (a^(1/2)*atanh((3*a^(1/2)*b^7*(a + b*tan(e + f*x)^2)^(1/2))/(3*a*b^ 
7 - (29*a^2*b^6)/4 + (23*a^3*b^5)/4 - (3*a^4*b^4)/2) - (29*a^(3/2)*b^6*(a 
+ b*tan(e + f*x)^2)^(1/2))/(4*(3*a*b^7 - (29*a^2*b^6)/4 + (23*a^3*b^5)/4 - 
 (3*a^4*b^4)/2)) + (23*a^(5/2)*b^5*(a + b*tan(e + f*x)^2)^(1/2))/(4*(3*a*b 
^7 - (29*a^2*b^6)/4 + (23*a^3*b^5)/4 - (3*a^4*b^4)/2)) - (3*a^(7/2)*b^4*(a 
 + b*tan(e + f*x)^2)^(1/2))/(2*(3*a*b^7 - (29*a^2*b^6)/4 + (23*a^3*b^5)/4 
- (3*a^4*b^4)/2)))*(2*a - 3*b))/(2*f) - (a*b*(a + b*tan(e + f*x)^2)^(1/2)) 
/(2*(f*(a + b*tan(e + f*x)^2) - a*f))
 

Reduce [F]

\[ \int \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int \cot \left (f x +e \right )^{3} \left (\tan \left (f x +e \right )^{2} b +a \right )^{\frac {3}{2}}d x \] Input:

int(cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(3/2),x)
 

Output:

int(cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(3/2),x)