\(\int \frac {\cot ^5(e+f x)}{(a+b \tan ^2(e+f x))^{3/2}} \, dx\) [338]

Optimal result
Mathematica [C] (verified)
Rubi [F]
Maple [B] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-1)]
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 215 \[ \int \frac {\cot ^5(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\left (8 a^2+12 a b+15 b^2\right ) \text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a}}\right )}{8 a^{7/2} f}+\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{(a-b)^{3/2} f}+\frac {b \left (4 a^2+3 a b-15 b^2\right )}{8 a^3 (a-b) f \sqrt {a+b \tan ^2(e+f x)}}+\frac {(4 a+5 b) \cot ^2(e+f x)}{8 a^2 f \sqrt {a+b \tan ^2(e+f x)}}-\frac {\cot ^4(e+f x)}{4 a f \sqrt {a+b \tan ^2(e+f x)}} \] Output:

-1/8*(8*a^2+12*a*b+15*b^2)*arctanh((a+b*tan(f*x+e)^2)^(1/2)/a^(1/2))/a^(7/ 
2)/f+arctanh((a+b*tan(f*x+e)^2)^(1/2)/(a-b)^(1/2))/(a-b)^(3/2)/f+1/8*b*(4* 
a^2+3*a*b-15*b^2)/a^3/(a-b)/f/(a+b*tan(f*x+e)^2)^(1/2)+1/8*(4*a+5*b)*cot(f 
*x+e)^2/a^2/f/(a+b*tan(f*x+e)^2)^(1/2)-1/4*cot(f*x+e)^4/a/f/(a+b*tan(f*x+e 
)^2)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.79 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.66 \[ \int \frac {\cot ^5(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\frac {8 a^3 \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {a+b \tan ^2(e+f x)}{a-b}\right )+(a-b) \left (a \cot ^2(e+f x) \left (-4 a-5 b+2 a \cot ^2(e+f x)\right )-\left (8 a^2+12 a b+15 b^2\right ) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},1+\frac {b \tan ^2(e+f x)}{a}\right )\right )}{8 a^3 (-a+b) f \sqrt {a+b \tan ^2(e+f x)}} \] Input:

Integrate[Cot[e + f*x]^5/(a + b*Tan[e + f*x]^2)^(3/2),x]
 

Output:

(8*a^3*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tan[e + f*x]^2)/(a - b)] + ( 
a - b)*(a*Cot[e + f*x]^2*(-4*a - 5*b + 2*a*Cot[e + f*x]^2) - (8*a^2 + 12*a 
*b + 15*b^2)*Hypergeometric2F1[-1/2, 1, 1/2, 1 + (b*Tan[e + f*x]^2)/a]))/( 
8*a^3*(-a + b)*f*Sqrt[a + b*Tan[e + f*x]^2])
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

Failed to integrate

Input:

Int[Cot[e + f*x]^5/(a + b*Tan[e + f*x]^2)^(3/2),x]
 

Output:

$Aborted
 

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(11428\) vs. \(2(189)=378\).

Time = 8.27 (sec) , antiderivative size = 11429, normalized size of antiderivative = 53.16

method result size
default \(\text {Expression too large to display}\) \(11429\)

Input:

int(cot(f*x+e)^5/(a+b*tan(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

result too large to display
 

Fricas [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 1501, normalized size of antiderivative = 6.98 \[ \int \frac {\cot ^5(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate(cot(f*x+e)^5/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")
 

Output:

[-1/16*(8*(a^4*b*tan(f*x + e)^6 + a^5*tan(f*x + e)^4)*sqrt(a - b)*log((b*t 
an(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - b) + 2*a - b)/(tan(f 
*x + e)^2 + 1)) - ((8*a^4*b - 4*a^3*b^2 - a^2*b^3 - 18*a*b^4 + 15*b^5)*tan 
(f*x + e)^6 + (8*a^5 - 4*a^4*b - a^3*b^2 - 18*a^2*b^3 + 15*a*b^4)*tan(f*x 
+ e)^4)*sqrt(a)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt( 
a) + 2*a)/tan(f*x + e)^2) + 2*(2*a^5 - 4*a^4*b + 2*a^3*b^2 - (4*a^4*b - a^ 
3*b^2 - 18*a^2*b^3 + 15*a*b^4)*tan(f*x + e)^4 - (4*a^5 - 3*a^4*b - 6*a^3*b 
^2 + 5*a^2*b^3)*tan(f*x + e)^2)*sqrt(b*tan(f*x + e)^2 + a))/((a^6*b - 2*a^ 
5*b^2 + a^4*b^3)*f*tan(f*x + e)^6 + (a^7 - 2*a^6*b + a^5*b^2)*f*tan(f*x + 
e)^4), -1/16*(16*(a^4*b*tan(f*x + e)^6 + a^5*tan(f*x + e)^4)*sqrt(-a + b)* 
arctan(sqrt(-a + b)/sqrt(b*tan(f*x + e)^2 + a)) - ((8*a^4*b - 4*a^3*b^2 - 
a^2*b^3 - 18*a*b^4 + 15*b^5)*tan(f*x + e)^6 + (8*a^5 - 4*a^4*b - a^3*b^2 - 
 18*a^2*b^3 + 15*a*b^4)*tan(f*x + e)^4)*sqrt(a)*log((b*tan(f*x + e)^2 - 2* 
sqrt(b*tan(f*x + e)^2 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2) + 2*(2*a^5 - 4*a 
^4*b + 2*a^3*b^2 - (4*a^4*b - a^3*b^2 - 18*a^2*b^3 + 15*a*b^4)*tan(f*x + e 
)^4 - (4*a^5 - 3*a^4*b - 6*a^3*b^2 + 5*a^2*b^3)*tan(f*x + e)^2)*sqrt(b*tan 
(f*x + e)^2 + a))/((a^6*b - 2*a^5*b^2 + a^4*b^3)*f*tan(f*x + e)^6 + (a^7 - 
 2*a^6*b + a^5*b^2)*f*tan(f*x + e)^4), 1/8*(((8*a^4*b - 4*a^3*b^2 - a^2*b^ 
3 - 18*a*b^4 + 15*b^5)*tan(f*x + e)^6 + (8*a^5 - 4*a^4*b - a^3*b^2 - 18*a^ 
2*b^3 + 15*a*b^4)*tan(f*x + e)^4)*sqrt(-a)*arctan(sqrt(-a)/sqrt(b*tan(f...
 

Sympy [F]

\[ \int \frac {\cot ^5(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\cot ^{5}{\left (e + f x \right )}}{\left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(cot(f*x+e)**5/(a+b*tan(f*x+e)**2)**(3/2),x)
 

Output:

Integral(cot(e + f*x)**5/(a + b*tan(e + f*x)**2)**(3/2), x)
 

Maxima [F(-1)]

Timed out. \[ \int \frac {\cot ^5(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(cot(f*x+e)^5/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

Timed out
 

Giac [F(-1)]

Timed out. \[ \int \frac {\cot ^5(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(cot(f*x+e)^5/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 9.20 (sec) , antiderivative size = 2118, normalized size of antiderivative = 9.85 \[ \int \frac {\cot ^5(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\text {Too large to display} \] Input:

int(cot(e + f*x)^5/(a + b*tan(e + f*x)^2)^(3/2),x)
 

Output:

(atan((((((a + b*tan(e + f*x)^2)^(1/2)*(230400*a^9*b^11*f^3 - 783360*a^10* 
b^10*f^3 + 854016*a^11*b^9*f^3 - 387072*a^12*b^8*f^3 + 480256*a^13*b^7*f^3 
 - 680960*a^14*b^6*f^3 + 352256*a^15*b^5*f^3 - 262144*a^16*b^4*f^3 + 32768 
0*a^17*b^3*f^3 - 131072*a^18*b^2*f^3))/2 + (((a - b)^3)^(1/2)*(638976*a^13 
*b^9*f^4 - 122880*a^12*b^10*f^4 - 1318912*a^14*b^8*f^4 + 1376256*a^15*b^7* 
f^4 - 794624*a^16*b^6*f^4 + 311296*a^17*b^5*f^4 - 122880*a^18*b^4*f^4 + 32 
768*a^19*b^3*f^4 + ((a + b*tan(e + f*x)^2)^(1/2)*((a - b)^3)^(1/2)*(262144 
*a^15*b^8*f^5 - 1835008*a^16*b^7*f^5 + 5242880*a^17*b^6*f^5 - 7864320*a^18 
*b^5*f^5 + 6553600*a^19*b^4*f^5 - 2883584*a^20*b^3*f^5 + 524288*a^21*b^2*f 
^5))/(4*f*(a - b)^3)))/(2*f*(a - b)^3))*((a - b)^3)^(1/2)*1i)/(f*(a - b)^3 
) + ((((a + b*tan(e + f*x)^2)^(1/2)*(230400*a^9*b^11*f^3 - 783360*a^10*b^1 
0*f^3 + 854016*a^11*b^9*f^3 - 387072*a^12*b^8*f^3 + 480256*a^13*b^7*f^3 - 
680960*a^14*b^6*f^3 + 352256*a^15*b^5*f^3 - 262144*a^16*b^4*f^3 + 327680*a 
^17*b^3*f^3 - 131072*a^18*b^2*f^3))/2 + (((a - b)^3)^(1/2)*(122880*a^12*b^ 
10*f^4 - 638976*a^13*b^9*f^4 + 1318912*a^14*b^8*f^4 - 1376256*a^15*b^7*f^4 
 + 794624*a^16*b^6*f^4 - 311296*a^17*b^5*f^4 + 122880*a^18*b^4*f^4 - 32768 
*a^19*b^3*f^4 + ((a + b*tan(e + f*x)^2)^(1/2)*((a - b)^3)^(1/2)*(262144*a^ 
15*b^8*f^5 - 1835008*a^16*b^7*f^5 + 5242880*a^17*b^6*f^5 - 7864320*a^18*b^ 
5*f^5 + 6553600*a^19*b^4*f^5 - 2883584*a^20*b^3*f^5 + 524288*a^21*b^2*f^5) 
)/(4*f*(a - b)^3)))/(2*f*(a - b)^3))*((a - b)^3)^(1/2)*1i)/(f*(a - b)^3...
 

Reduce [F]

\[ \int \frac {\cot ^5(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\cot \left (f x +e \right )^{5}}{\left (\tan \left (f x +e \right )^{2} b +a \right )^{\frac {3}{2}}}d x \] Input:

int(cot(f*x+e)^5/(a+b*tan(f*x+e)^2)^(3/2),x)
 

Output:

int(cot(f*x+e)^5/(a+b*tan(f*x+e)^2)^(3/2),x)