\(\int \frac {\cot ^2(e+f x)}{(a+b \tan ^2(e+f x))^{5/2}} \, dx\) [356]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-1)]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 186 \[ \int \frac {\cot ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=-\frac {\arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{(a-b)^{5/2} f}-\frac {b \cot (e+f x)}{3 a (a-b) f \left (a+b \tan ^2(e+f x)\right )^{3/2}}-\frac {(7 a-4 b) b \cot (e+f x)}{3 a^2 (a-b)^2 f \sqrt {a+b \tan ^2(e+f x)}}-\frac {(a-4 b) (3 a-2 b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{3 a^3 (a-b)^2 f} \] Output:

-arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/(a-b)^(5/2)/f-1/3 
*b*cot(f*x+e)/a/(a-b)/f/(a+b*tan(f*x+e)^2)^(3/2)-1/3*(7*a-4*b)*b*cot(f*x+e 
)/a^2/(a-b)^2/f/(a+b*tan(f*x+e)^2)^(1/2)-1/3*(a-4*b)*(3*a-2*b)*cot(f*x+e)* 
(a+b*tan(f*x+e)^2)^(1/2)/a^3/(a-b)^2/f
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 12.03 (sec) , antiderivative size = 1890, normalized size of antiderivative = 10.16 \[ \int \frac {\cot ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx =\text {Too large to display} \] Input:

Integrate[Cot[e + f*x]^2/(a + b*Tan[e + f*x]^2)^(5/2),x]
 

Output:

-((Cos[e + f*x]^2*Cot[e + f*x]*((20*a*Csc[e + f*x]^2)/(3*(a - b)) - (5*a^2 
*Csc[e + f*x]^4)/(a - b)^2 + (40*b*Sec[e + f*x]^2)/(a - b) - (30*a*b*Csc[e 
 + f*x]^2*Sec[e + f*x]^2)/(a - b)^2 - (40*b^2*Sec[e + f*x]^4)/(a - b)^2 + 
(92*(a - b)*Hypergeometric2F1[2, 2, 9/2, ((a - b)*Sin[e + f*x]^2)/a]*Sin[e 
 + f*x]^2)/(105*a) + (24*(a - b)*HypergeometricPFQ[{2, 2, 2}, {1, 9/2}, (( 
a - b)*Sin[e + f*x]^2)/a]*Sin[e + f*x]^2)/(35*a) + (16*(a - b)*Hypergeomet 
ricPFQ[{2, 2, 2, 2}, {1, 1, 9/2}, ((a - b)*Sin[e + f*x]^2)/a]*Sin[e + f*x] 
^2)/(105*a) + (160*b^2*Sec[e + f*x]^2*Tan[e + f*x]^2)/(3*a*(a - b)) + (124 
*(a - b)*b*Hypergeometric2F1[2, 2, 9/2, ((a - b)*Sin[e + f*x]^2)/a]*Sin[e 
+ f*x]^2*Tan[e + f*x]^2)/(35*a^2) + (16*(a - b)*b*HypergeometricPFQ[{2, 2, 
 2}, {1, 9/2}, ((a - b)*Sin[e + f*x]^2)/a]*Sin[e + f*x]^2*Tan[e + f*x]^2)/ 
(7*a^2) + (16*(a - b)*b*HypergeometricPFQ[{2, 2, 2, 2}, {1, 1, 9/2}, ((a - 
 b)*Sin[e + f*x]^2)/a]*Sin[e + f*x]^2*Tan[e + f*x]^2)/(35*a^2) + (64*b^3*S 
ec[e + f*x]^2*Tan[e + f*x]^4)/(3*a^2*(a - b)) + (152*(a - b)*b^2*Hypergeom 
etric2F1[2, 2, 9/2, ((a - b)*Sin[e + f*x]^2)/a]*Sin[e + f*x]^2*Tan[e + f*x 
]^4)/(35*a^3) + (88*(a - b)*b^2*HypergeometricPFQ[{2, 2, 2}, {1, 9/2}, ((a 
 - b)*Sin[e + f*x]^2)/a]*Sin[e + f*x]^2*Tan[e + f*x]^4)/(35*a^3) + (16*(a 
- b)*b^2*HypergeometricPFQ[{2, 2, 2, 2}, {1, 1, 9/2}, ((a - b)*Sin[e + f*x 
]^2)/a]*Sin[e + f*x]^2*Tan[e + f*x]^4)/(35*a^3) + (176*(a - b)*b^3*Hyperge 
ometric2F1[2, 2, 9/2, ((a - b)*Sin[e + f*x]^2)/a]*Sin[e + f*x]^2*Tan[e ...
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.06, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4153, 374, 441, 445, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (e+f x)^2 \left (a+b \tan (e+f x)^2\right )^{5/2}}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle \frac {\int \frac {\cot ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a\right )^{5/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 374

\(\displaystyle \frac {\frac {\int \frac {\cot ^2(e+f x) \left (-4 b \tan ^2(e+f x)+3 a-4 b\right )}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a\right )^{3/2}}d\tan (e+f x)}{3 a (a-b)}-\frac {b \cot (e+f x)}{3 a (a-b) \left (a+b \tan ^2(e+f x)\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 441

\(\displaystyle \frac {\frac {\frac {\int \frac {\cot ^2(e+f x) \left ((a-4 b) (3 a-2 b)-2 (7 a-4 b) b \tan ^2(e+f x)\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)}{a (a-b)}-\frac {b (7 a-4 b) \cot (e+f x)}{a (a-b) \sqrt {a+b \tan ^2(e+f x)}}}{3 a (a-b)}-\frac {b \cot (e+f x)}{3 a (a-b) \left (a+b \tan ^2(e+f x)\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 445

\(\displaystyle \frac {\frac {\frac {-\frac {\int \frac {3 a^3}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)}{a}-\frac {(a-4 b) (3 a-2 b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{a}}{a (a-b)}-\frac {b (7 a-4 b) \cot (e+f x)}{a (a-b) \sqrt {a+b \tan ^2(e+f x)}}}{3 a (a-b)}-\frac {b \cot (e+f x)}{3 a (a-b) \left (a+b \tan ^2(e+f x)\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {-3 a^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)-\frac {(a-4 b) (3 a-2 b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{a}}{a (a-b)}-\frac {b (7 a-4 b) \cot (e+f x)}{a (a-b) \sqrt {a+b \tan ^2(e+f x)}}}{3 a (a-b)}-\frac {b \cot (e+f x)}{3 a (a-b) \left (a+b \tan ^2(e+f x)\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\frac {-3 a^2 \int \frac {1}{1-\frac {(b-a) \tan ^2(e+f x)}{b \tan ^2(e+f x)+a}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a}}-\frac {(a-4 b) (3 a-2 b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{a}}{a (a-b)}-\frac {b (7 a-4 b) \cot (e+f x)}{a (a-b) \sqrt {a+b \tan ^2(e+f x)}}}{3 a (a-b)}-\frac {b \cot (e+f x)}{3 a (a-b) \left (a+b \tan ^2(e+f x)\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\frac {-\frac {3 a^2 \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{\sqrt {a-b}}-\frac {(a-4 b) (3 a-2 b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{a}}{a (a-b)}-\frac {b (7 a-4 b) \cot (e+f x)}{a (a-b) \sqrt {a+b \tan ^2(e+f x)}}}{3 a (a-b)}-\frac {b \cot (e+f x)}{3 a (a-b) \left (a+b \tan ^2(e+f x)\right )^{3/2}}}{f}\)

Input:

Int[Cot[e + f*x]^2/(a + b*Tan[e + f*x]^2)^(5/2),x]
 

Output:

(-1/3*(b*Cot[e + f*x])/(a*(a - b)*(a + b*Tan[e + f*x]^2)^(3/2)) + (-(((7*a 
 - 4*b)*b*Cot[e + f*x])/(a*(a - b)*Sqrt[a + b*Tan[e + f*x]^2])) + ((-3*a^2 
*ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/Sqrt[a - b 
] - ((a - 4*b)*(3*a - 2*b)*Cot[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2])/a)/(a* 
(a - b)))/(3*a*(a - b)))/f
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 374
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-b)*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q 
 + 1)/(a*e*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(e*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[b*c*(m + 1) + 2*(b*c - 
a*d)*(p + 1) + d*b*(m + 2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, 
c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IntBinomialQ[a, b, 
 c, d, e, m, 2, p, q, x]
 

rule 441
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*(g*x)^(m + 1)*(a 
+ b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(a*g*2*(b*c - a*d)*(p + 1))), x] + Si 
mp[1/(a*2*(b*c - a*d)*(p + 1))   Int[(g*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2 
)^q*Simp[c*(b*e - a*f)*(m + 1) + e*2*(b*c - a*d)*(p + 1) + d*(b*e - a*f)*(m 
 + 2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m, q}, 
 x] && LtQ[p, -1]
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
Maple [F]

\[\int \frac {\cot \left (f x +e \right )^{2}}{\left (a +b \tan \left (f x +e \right )^{2}\right )^{\frac {5}{2}}}d x\]

Input:

int(cot(f*x+e)^2/(a+b*tan(f*x+e)^2)^(5/2),x)
 

Output:

int(cot(f*x+e)^2/(a+b*tan(f*x+e)^2)^(5/2),x)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 342 vs. \(2 (168) = 336\).

Time = 0.20 (sec) , antiderivative size = 753, normalized size of antiderivative = 4.05 \[ \int \frac {\cot ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx =\text {Too large to display} \] Input:

integrate(cot(f*x+e)^2/(a+b*tan(f*x+e)^2)^(5/2),x, algorithm="fricas")
 

Output:

[-1/12*(3*(a^3*b^2*tan(f*x + e)^5 + 2*a^4*b*tan(f*x + e)^3 + a^5*tan(f*x + 
 e))*sqrt(-a + b)*log(-((a^2 - 8*a*b + 8*b^2)*tan(f*x + e)^4 - 2*(3*a^2 - 
4*a*b)*tan(f*x + e)^2 + a^2 + 4*((a - 2*b)*tan(f*x + e)^3 - a*tan(f*x + e) 
)*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b))/(tan(f*x + e)^4 + 2*tan(f*x + e 
)^2 + 1)) + 4*(3*a^5 - 9*a^4*b + 9*a^3*b^2 - 3*a^2*b^3 + (3*a^3*b^2 - 17*a 
^2*b^3 + 22*a*b^4 - 8*b^5)*tan(f*x + e)^4 + 3*(2*a^4*b - 9*a^3*b^2 + 11*a^ 
2*b^3 - 4*a*b^4)*tan(f*x + e)^2)*sqrt(b*tan(f*x + e)^2 + a))/((a^6*b^2 - 3 
*a^5*b^3 + 3*a^4*b^4 - a^3*b^5)*f*tan(f*x + e)^5 + 2*(a^7*b - 3*a^6*b^2 + 
3*a^5*b^3 - a^4*b^4)*f*tan(f*x + e)^3 + (a^8 - 3*a^7*b + 3*a^6*b^2 - a^5*b 
^3)*f*tan(f*x + e)), -1/6*(3*(a^3*b^2*tan(f*x + e)^5 + 2*a^4*b*tan(f*x + e 
)^3 + a^5*tan(f*x + e))*sqrt(a - b)*arctan(-2*sqrt(b*tan(f*x + e)^2 + a)*s 
qrt(a - b)*tan(f*x + e)/((a - 2*b)*tan(f*x + e)^2 - a)) + 2*(3*a^5 - 9*a^4 
*b + 9*a^3*b^2 - 3*a^2*b^3 + (3*a^3*b^2 - 17*a^2*b^3 + 22*a*b^4 - 8*b^5)*t 
an(f*x + e)^4 + 3*(2*a^4*b - 9*a^3*b^2 + 11*a^2*b^3 - 4*a*b^4)*tan(f*x + e 
)^2)*sqrt(b*tan(f*x + e)^2 + a))/((a^6*b^2 - 3*a^5*b^3 + 3*a^4*b^4 - a^3*b 
^5)*f*tan(f*x + e)^5 + 2*(a^7*b - 3*a^6*b^2 + 3*a^5*b^3 - a^4*b^4)*f*tan(f 
*x + e)^3 + (a^8 - 3*a^7*b + 3*a^6*b^2 - a^5*b^3)*f*tan(f*x + e))]
 

Sympy [F]

\[ \int \frac {\cot ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\cot ^{2}{\left (e + f x \right )}}{\left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(cot(f*x+e)**2/(a+b*tan(f*x+e)**2)**(5/2),x)
 

Output:

Integral(cot(e + f*x)**2/(a + b*tan(e + f*x)**2)**(5/2), x)
 

Maxima [F(-1)]

Timed out. \[ \int \frac {\cot ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(cot(f*x+e)^2/(a+b*tan(f*x+e)^2)^(5/2),x, algorithm="maxima")
 

Output:

Timed out
 

Giac [F(-1)]

Timed out. \[ \int \frac {\cot ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(cot(f*x+e)^2/(a+b*tan(f*x+e)^2)^(5/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {{\mathrm {cot}\left (e+f\,x\right )}^2}{{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{5/2}} \,d x \] Input:

int(cot(e + f*x)^2/(a + b*tan(e + f*x)^2)^(5/2),x)
 

Output:

int(cot(e + f*x)^2/(a + b*tan(e + f*x)^2)^(5/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {\cot ^2(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\sqrt {\tan \left (f x +e \right )^{2} b +a}\, \cot \left (f x +e \right )^{2}}{\tan \left (f x +e \right )^{6} b^{3}+3 \tan \left (f x +e \right )^{4} a \,b^{2}+3 \tan \left (f x +e \right )^{2} a^{2} b +a^{3}}d x \] Input:

int(cot(f*x+e)^2/(a+b*tan(f*x+e)^2)^(5/2),x)
 

Output:

int((sqrt(tan(e + f*x)**2*b + a)*cot(e + f*x)**2)/(tan(e + f*x)**6*b**3 + 
3*tan(e + f*x)**4*a*b**2 + 3*tan(e + f*x)**2*a**2*b + a**3),x)