\(\int \cot ^3(d+e x) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx\) [7]

Optimal result
Mathematica [C] (verified)
Rubi [F]
Maple [F(-1)]
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 690 \[ \int \cot ^3(d+e x) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=\frac {\sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \arctan \left (\frac {b^2+(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )-b \sqrt {a^2+b^2-2 a c+c^2} \tan (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}+\frac {\sqrt {a} \text {arctanh}\left (\frac {2 a+b \tan (d+e x)}{2 \sqrt {a} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{e}+\frac {\left (b^2-4 a c\right ) \text {arctanh}\left (\frac {2 a+b \tan (d+e x)}{2 \sqrt {a} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{8 a^{3/2} e}-\frac {\sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \text {arctanh}\left (\frac {b^2+(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )+b \sqrt {a^2+b^2-2 a c+c^2} \tan (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}-\frac {\cot ^2(d+e x) (2 a+b \tan (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}{4 a e} \] Output:

1/2*(a^2+b^2+c*(c+(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2+c^2)^(1 
/2)))^(1/2)*arctan(1/2*(b^2+(a-c)*(a-c-(a^2-2*a*c+b^2+c^2)^(1/2))-b*(a^2-2 
*a*c+b^2+c^2)^(1/2)*tan(e*x+d))*2^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/4)/(a^2+b^2 
+c*(c+(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2)/ 
(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2))*2^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/4)/e 
+a^(1/2)*arctanh(1/2*(2*a+b*tan(e*x+d))/a^(1/2)/(a+b*tan(e*x+d)+c*tan(e*x+ 
d)^2)^(1/2))/e+1/8*(-4*a*c+b^2)*arctanh(1/2*(2*a+b*tan(e*x+d))/a^(1/2)/(a+ 
b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2))/a^(3/2)/e-1/2*(a^2+b^2+c*(c-(a^2-2*a*c 
+b^2+c^2)^(1/2))-a*(2*c-(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2)*arctanh(1/2*(b^2 
+(a-c)*(a-c+(a^2-2*a*c+b^2+c^2)^(1/2))+b*(a^2-2*a*c+b^2+c^2)^(1/2)*tan(e*x 
+d))*2^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/4)/(a^2+b^2+c*(c-(a^2-2*a*c+b^2+c^2)^( 
1/2))-a*(2*c-(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2)/(a+b*tan(e*x+d)+c*tan(e*x+d 
)^2)^(1/2))*2^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/4)/e-1/4*cot(e*x+d)^2*(2*a+b*ta 
n(e*x+d))*(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2)/a/e
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.18 (sec) , antiderivative size = 289, normalized size of antiderivative = 0.42 \[ \int \cot ^3(d+e x) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=\frac {\left (8 a^2+b^2-4 a c\right ) \text {arctanh}\left (\frac {2 a+b \tan (d+e x)}{2 \sqrt {a} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )-2 \sqrt {a} \left (2 a \sqrt {a-i b-c} \text {arctanh}\left (\frac {2 a-i b+(b-2 i c) \tan (d+e x)}{2 \sqrt {a-i b-c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )+2 a \sqrt {a+i b-c} \text {arctanh}\left (\frac {2 a+i b+(b+2 i c) \tan (d+e x)}{2 \sqrt {a+i b-c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )+\cot (d+e x) (b+2 a \cot (d+e x)) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}\right )}{8 a^{3/2} e} \] Input:

Integrate[Cot[d + e*x]^3*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2],x]
 

Output:

((8*a^2 + b^2 - 4*a*c)*ArcTanh[(2*a + b*Tan[d + e*x])/(2*Sqrt[a]*Sqrt[a + 
b*Tan[d + e*x] + c*Tan[d + e*x]^2])] - 2*Sqrt[a]*(2*a*Sqrt[a - I*b - c]*Ar 
cTanh[(2*a - I*b + (b - (2*I)*c)*Tan[d + e*x])/(2*Sqrt[a - I*b - c]*Sqrt[a 
 + b*Tan[d + e*x] + c*Tan[d + e*x]^2])] + 2*a*Sqrt[a + I*b - c]*ArcTanh[(2 
*a + I*b + (b + (2*I)*c)*Tan[d + e*x])/(2*Sqrt[a + I*b - c]*Sqrt[a + b*Tan 
[d + e*x] + c*Tan[d + e*x]^2])] + Cot[d + e*x]*(b + 2*a*Cot[d + e*x])*Sqrt 
[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2]))/(8*a^(3/2)*e)
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^3(d+e x) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \tan (d+e x)+c \tan (d+e x)^2}}{\tan (d+e x)^3}dx\)

\(\Big \downarrow \) 4183

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {\int \left (\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot ^3(d+e x)-\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot (d+e x)+\frac {\tan (d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}\right )d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {\int \left (\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot ^3(d+e x)-\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot (d+e x)+\frac {\tan (d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}\right )d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {\int \left (\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot ^3(d+e x)-\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot (d+e x)+\frac {\tan (d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}\right )d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {\int \left (\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot ^3(d+e x)-\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot (d+e x)+\frac {\tan (d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}\right )d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {\int \left (\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot ^3(d+e x)-\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot (d+e x)+\frac {\tan (d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}\right )d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {\int \left (\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot ^3(d+e x)-\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot (d+e x)+\frac {\tan (d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}\right )d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {\int \left (\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot ^3(d+e x)-\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot (d+e x)+\frac {\tan (d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}\right )d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {\int \left (\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot ^3(d+e x)-\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot (d+e x)+\frac {\tan (d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}\right )d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {\int \left (\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot ^3(d+e x)-\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot (d+e x)+\frac {\tan (d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}\right )d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {\int \left (\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot ^3(d+e x)-\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot (d+e x)+\frac {\tan (d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}\right )d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {\int \left (\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot ^3(d+e x)-\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot (d+e x)+\frac {\tan (d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}\right )d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {\int \left (\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot ^3(d+e x)-\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot (d+e x)+\frac {\tan (d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}\right )d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {\int \left (\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot ^3(d+e x)-\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot (d+e x)+\frac {\tan (d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}\right )d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {\int \left (\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot ^3(d+e x)-\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a} \cot (d+e x)+\frac {\tan (d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}\right )d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 7239

\(\displaystyle \frac {\int \frac {\cot ^3(d+e x) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}{\tan ^2(d+e x)+1}d\tan (d+e x)}{e}\)

Input:

Int[Cot[d + e*x]^3*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2],x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4183
Int[tan[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*((f_.)*tan[(d_.) + (e_.)*( 
x_)])^(n_.) + (c_.)*((f_.)*tan[(d_.) + (e_.)*(x_)])^(n2_.))^(p_), x_Symbol] 
 :> Simp[f/e   Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)), x 
], x, f*Tan[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n 
2, 2*n] && NeQ[b^2 - 4*a*c, 0]
 

rule 7239
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; Simpl 
erIntegrandQ[v, u, x]]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
Maple [F(-1)]

Timed out.

hanged

Input:

int(cot(e*x+d)^3*(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x)
 

Output:

int(cot(e*x+d)^3*(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4716 vs. \(2 (621) = 1242\).

Time = 0.97 (sec) , antiderivative size = 9449, normalized size of antiderivative = 13.69 \[ \int \cot ^3(d+e x) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=\text {Too large to display} \] Input:

integrate(cot(e*x+d)^3*(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm= 
"fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \cot ^3(d+e x) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=\int \sqrt {a + b \tan {\left (d + e x \right )} + c \tan ^{2}{\left (d + e x \right )}} \cot ^{3}{\left (d + e x \right )}\, dx \] Input:

integrate(cot(e*x+d)**3*(a+b*tan(e*x+d)+c*tan(e*x+d)**2)**(1/2),x)
 

Output:

Integral(sqrt(a + b*tan(d + e*x) + c*tan(d + e*x)**2)*cot(d + e*x)**3, x)
 

Maxima [F]

\[ \int \cot ^3(d+e x) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=\int { \sqrt {c \tan \left (e x + d\right )^{2} + b \tan \left (e x + d\right ) + a} \cot \left (e x + d\right )^{3} \,d x } \] Input:

integrate(cot(e*x+d)^3*(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm= 
"maxima")
 

Output:

integrate(sqrt(c*tan(e*x + d)^2 + b*tan(e*x + d) + a)*cot(e*x + d)^3, x)
 

Giac [F]

\[ \int \cot ^3(d+e x) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=\int { \sqrt {c \tan \left (e x + d\right )^{2} + b \tan \left (e x + d\right ) + a} \cot \left (e x + d\right )^{3} \,d x } \] Input:

integrate(cot(e*x+d)^3*(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm= 
"giac")
 

Output:

integrate(sqrt(c*tan(e*x + d)^2 + b*tan(e*x + d) + a)*cot(e*x + d)^3, x)
 

Mupad [F(-1)]

Timed out. \[ \int \cot ^3(d+e x) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=\int {\mathrm {cot}\left (d+e\,x\right )}^3\,\sqrt {c\,{\mathrm {tan}\left (d+e\,x\right )}^2+b\,\mathrm {tan}\left (d+e\,x\right )+a} \,d x \] Input:

int(cot(d + e*x)^3*(a + b*tan(d + e*x) + c*tan(d + e*x)^2)^(1/2),x)
 

Output:

int(cot(d + e*x)^3*(a + b*tan(d + e*x) + c*tan(d + e*x)^2)^(1/2), x)
 

Reduce [F]

\[ \int \cot ^3(d+e x) \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)} \, dx=\int \cot \left (e x +d \right )^{3} \sqrt {\tan \left (e x +d \right )^{2} c +\tan \left (e x +d \right ) b +a}d x \] Input:

int(cot(e*x+d)^3*(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x)
 

Output:

int(cot(e*x+d)^3*(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x)