\(\int (c \cot (a+b x))^{7/2} \, dx\) [9]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 12, antiderivative size = 177 \[ \int (c \cot (a+b x))^{7/2} \, dx=\frac {c^{7/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {c \cot (a+b x)}}{\sqrt {c}}\right )}{\sqrt {2} b}-\frac {c^{7/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {c \cot (a+b x)}}{\sqrt {c}}\right )}{\sqrt {2} b}-\frac {c^{7/2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c \cot (a+b x)}}{\sqrt {c}+\sqrt {c} \cot (a+b x)}\right )}{\sqrt {2} b}+\frac {2 c^3 \sqrt {c \cot (a+b x)}}{b}-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b} \] Output:

1/2*c^(7/2)*arctan(1-2^(1/2)*(c*cot(b*x+a))^(1/2)/c^(1/2))*2^(1/2)/b-1/2*c 
^(7/2)*arctan(1+2^(1/2)*(c*cot(b*x+a))^(1/2)/c^(1/2))*2^(1/2)/b-1/2*c^(7/2 
)*arctanh(2^(1/2)*(c*cot(b*x+a))^(1/2)/(c^(1/2)+c^(1/2)*cot(b*x+a)))*2^(1/ 
2)/b+2*c^3*(c*cot(b*x+a))^(1/2)/b-2/5*c*(c*cot(b*x+a))^(5/2)/b
 

Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 175, normalized size of antiderivative = 0.99 \[ \int (c \cot (a+b x))^{7/2} \, dx=-\frac {(c \cot (a+b x))^{7/2} \left (-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (a+b x)}\right )}{\sqrt {2}}+\frac {\arctan \left (1+\sqrt {2} \sqrt {\cot (a+b x)}\right )}{\sqrt {2}}-2 \sqrt {\cot (a+b x)}+\frac {2}{5} \cot ^{\frac {5}{2}}(a+b x)-\frac {\log \left (1-\sqrt {2} \sqrt {\cot (a+b x)}+\cot (a+b x)\right )}{2 \sqrt {2}}+\frac {\log \left (1+\sqrt {2} \sqrt {\cot (a+b x)}+\cot (a+b x)\right )}{2 \sqrt {2}}\right )}{b \cot ^{\frac {7}{2}}(a+b x)} \] Input:

Integrate[(c*Cot[a + b*x])^(7/2),x]
 

Output:

-(((c*Cot[a + b*x])^(7/2)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Cot[a + b*x]]]/Sqrt[2 
]) + ArcTan[1 + Sqrt[2]*Sqrt[Cot[a + b*x]]]/Sqrt[2] - 2*Sqrt[Cot[a + b*x]] 
 + (2*Cot[a + b*x]^(5/2))/5 - Log[1 - Sqrt[2]*Sqrt[Cot[a + b*x]] + Cot[a + 
 b*x]]/(2*Sqrt[2]) + Log[1 + Sqrt[2]*Sqrt[Cot[a + b*x]] + Cot[a + b*x]]/(2 
*Sqrt[2])))/(b*Cot[a + b*x]^(7/2)))
 

Rubi [A] (warning: unable to verify)

Time = 0.57 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.28, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.250, Rules used = {3042, 3954, 3042, 3954, 3042, 3957, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c \cot (a+b x))^{7/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (-c \tan \left (a+b x+\frac {\pi }{2}\right )\right )^{7/2}dx\)

\(\Big \downarrow \) 3954

\(\displaystyle -c^2 \int (c \cot (a+b x))^{3/2}dx-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b}\)

\(\Big \downarrow \) 3042

\(\displaystyle -c^2 \int \left (-c \tan \left (a+b x+\frac {\pi }{2}\right )\right )^{3/2}dx-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b}\)

\(\Big \downarrow \) 3954

\(\displaystyle -c^2 \left (c^2 \left (-\int \frac {1}{\sqrt {c \cot (a+b x)}}dx\right )-\frac {2 c \sqrt {c \cot (a+b x)}}{b}\right )-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b}\)

\(\Big \downarrow \) 3042

\(\displaystyle -c^2 \left (c^2 \left (-\int \frac {1}{\sqrt {-c \tan \left (a+b x+\frac {\pi }{2}\right )}}dx\right )-\frac {2 c \sqrt {c \cot (a+b x)}}{b}\right )-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b}\)

\(\Big \downarrow \) 3957

\(\displaystyle -c^2 \left (\frac {c^3 \int \frac {1}{\sqrt {c \cot (a+b x)} \left (\cot ^2(a+b x) c^2+c^2\right )}d(c \cot (a+b x))}{b}-\frac {2 c \sqrt {c \cot (a+b x)}}{b}\right )-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b}\)

\(\Big \downarrow \) 266

\(\displaystyle -c^2 \left (\frac {2 c^3 \int \frac {1}{c^4 \cot ^4(a+b x)+c^2}d\sqrt {c \cot (a+b x)}}{b}-\frac {2 c \sqrt {c \cot (a+b x)}}{b}\right )-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b}\)

\(\Big \downarrow \) 755

\(\displaystyle -c^2 \left (\frac {2 c^3 \left (\frac {\int \frac {c-c^2 \cot ^2(a+b x)}{c^4 \cot ^4(a+b x)+c^2}d\sqrt {c \cot (a+b x)}}{2 c}+\frac {\int \frac {c^2 \cot ^2(a+b x)+c}{c^4 \cot ^4(a+b x)+c^2}d\sqrt {c \cot (a+b x)}}{2 c}\right )}{b}-\frac {2 c \sqrt {c \cot (a+b x)}}{b}\right )-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b}\)

\(\Big \downarrow \) 1476

\(\displaystyle -c^2 \left (\frac {2 c^3 \left (\frac {\frac {1}{2} \int \frac {1}{c^2 \cot ^2(a+b x)-\sqrt {2} c^{3/2} \cot (a+b x)+c}d\sqrt {c \cot (a+b x)}+\frac {1}{2} \int \frac {1}{c^2 \cot ^2(a+b x)+\sqrt {2} c^{3/2} \cot (a+b x)+c}d\sqrt {c \cot (a+b x)}}{2 c}+\frac {\int \frac {c-c^2 \cot ^2(a+b x)}{c^4 \cot ^4(a+b x)+c^2}d\sqrt {c \cot (a+b x)}}{2 c}\right )}{b}-\frac {2 c \sqrt {c \cot (a+b x)}}{b}\right )-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b}\)

\(\Big \downarrow \) 1082

\(\displaystyle -c^2 \left (\frac {2 c^3 \left (\frac {\frac {\int \frac {1}{-c^2 \cot ^2(a+b x)-1}d\left (1-\sqrt {2} \sqrt {c} \cot (a+b x)\right )}{\sqrt {2} \sqrt {c}}-\frac {\int \frac {1}{-c^2 \cot ^2(a+b x)-1}d\left (\sqrt {2} \sqrt {c} \cot (a+b x)+1\right )}{\sqrt {2} \sqrt {c}}}{2 c}+\frac {\int \frac {c-c^2 \cot ^2(a+b x)}{c^4 \cot ^4(a+b x)+c^2}d\sqrt {c \cot (a+b x)}}{2 c}\right )}{b}-\frac {2 c \sqrt {c \cot (a+b x)}}{b}\right )-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b}\)

\(\Big \downarrow \) 217

\(\displaystyle -c^2 \left (\frac {2 c^3 \left (\frac {\int \frac {c-c^2 \cot ^2(a+b x)}{c^4 \cot ^4(a+b x)+c^2}d\sqrt {c \cot (a+b x)}}{2 c}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {c} \cot (a+b x)+1\right )}{\sqrt {2} \sqrt {c}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {c} \cot (a+b x)\right )}{\sqrt {2} \sqrt {c}}}{2 c}\right )}{b}-\frac {2 c \sqrt {c \cot (a+b x)}}{b}\right )-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b}\)

\(\Big \downarrow \) 1479

\(\displaystyle -c^2 \left (\frac {2 c^3 \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt {c}-2 \sqrt {c \cot (a+b x)}}{c^2 \cot ^2(a+b x)-\sqrt {2} c^{3/2} \cot (a+b x)+c}d\sqrt {c \cot (a+b x)}}{2 \sqrt {2} \sqrt {c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {c}+\sqrt {2} \sqrt {c \cot (a+b x)}\right )}{c^2 \cot ^2(a+b x)+\sqrt {2} c^{3/2} \cot (a+b x)+c}d\sqrt {c \cot (a+b x)}}{2 \sqrt {2} \sqrt {c}}}{2 c}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {c} \cot (a+b x)+1\right )}{\sqrt {2} \sqrt {c}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {c} \cot (a+b x)\right )}{\sqrt {2} \sqrt {c}}}{2 c}\right )}{b}-\frac {2 c \sqrt {c \cot (a+b x)}}{b}\right )-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b}\)

\(\Big \downarrow \) 25

\(\displaystyle -c^2 \left (\frac {2 c^3 \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt {c}-2 \sqrt {c \cot (a+b x)}}{c^2 \cot ^2(a+b x)-\sqrt {2} c^{3/2} \cot (a+b x)+c}d\sqrt {c \cot (a+b x)}}{2 \sqrt {2} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {c}+\sqrt {2} \sqrt {c \cot (a+b x)}\right )}{c^2 \cot ^2(a+b x)+\sqrt {2} c^{3/2} \cot (a+b x)+c}d\sqrt {c \cot (a+b x)}}{2 \sqrt {2} \sqrt {c}}}{2 c}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {c} \cot (a+b x)+1\right )}{\sqrt {2} \sqrt {c}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {c} \cot (a+b x)\right )}{\sqrt {2} \sqrt {c}}}{2 c}\right )}{b}-\frac {2 c \sqrt {c \cot (a+b x)}}{b}\right )-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b}\)

\(\Big \downarrow \) 27

\(\displaystyle -c^2 \left (\frac {2 c^3 \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt {c}-2 \sqrt {c \cot (a+b x)}}{c^2 \cot ^2(a+b x)-\sqrt {2} c^{3/2} \cot (a+b x)+c}d\sqrt {c \cot (a+b x)}}{2 \sqrt {2} \sqrt {c}}+\frac {\int \frac {\sqrt {c}+\sqrt {2} \sqrt {c \cot (a+b x)}}{c^2 \cot ^2(a+b x)+\sqrt {2} c^{3/2} \cot (a+b x)+c}d\sqrt {c \cot (a+b x)}}{2 \sqrt {c}}}{2 c}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {c} \cot (a+b x)+1\right )}{\sqrt {2} \sqrt {c}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {c} \cot (a+b x)\right )}{\sqrt {2} \sqrt {c}}}{2 c}\right )}{b}-\frac {2 c \sqrt {c \cot (a+b x)}}{b}\right )-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b}\)

\(\Big \downarrow \) 1103

\(\displaystyle -c^2 \left (\frac {2 c^3 \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {c} \cot (a+b x)+1\right )}{\sqrt {2} \sqrt {c}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {c} \cot (a+b x)\right )}{\sqrt {2} \sqrt {c}}}{2 c}+\frac {\frac {\log \left (\sqrt {2} c^{3/2} \cot (a+b x)+c^2 \cot ^2(a+b x)+c\right )}{2 \sqrt {2} \sqrt {c}}-\frac {\log \left (-\sqrt {2} c^{3/2} \cot (a+b x)+c^2 \cot ^2(a+b x)+c\right )}{2 \sqrt {2} \sqrt {c}}}{2 c}\right )}{b}-\frac {2 c \sqrt {c \cot (a+b x)}}{b}\right )-\frac {2 c (c \cot (a+b x))^{5/2}}{5 b}\)

Input:

Int[(c*Cot[a + b*x])^(7/2),x]
 

Output:

(-2*c*(c*Cot[a + b*x])^(5/2))/(5*b) - c^2*((-2*c*Sqrt[c*Cot[a + b*x]])/b + 
 (2*c^3*((-(ArcTan[1 - Sqrt[2]*Sqrt[c]*Cot[a + b*x]]/(Sqrt[2]*Sqrt[c])) + 
ArcTan[1 + Sqrt[2]*Sqrt[c]*Cot[a + b*x]]/(Sqrt[2]*Sqrt[c]))/(2*c) + (-1/2* 
Log[c - Sqrt[2]*c^(3/2)*Cot[a + b*x] + c^2*Cot[a + b*x]^2]/(Sqrt[2]*Sqrt[c 
]) + Log[c + Sqrt[2]*c^(3/2)*Cot[a + b*x] + c^2*Cot[a + b*x]^2]/(2*Sqrt[2] 
*Sqrt[c]))/(2*c)))/b)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3954
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d 
*x])^(n - 1)/(d*(n - 1))), x] - Simp[b^2   Int[(b*Tan[c + d*x])^(n - 2), x] 
, x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 
Maple [A] (verified)

Time = 0.18 (sec) , antiderivative size = 169, normalized size of antiderivative = 0.95

method result size
derivativedivides \(-\frac {2 c \left (\frac {\left (c \cot \left (b x +a \right )\right )^{\frac {5}{2}}}{5}-c^{2} \sqrt {c \cot \left (b x +a \right )}+\frac {c^{2} \left (c^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {c \cot \left (b x +a \right )+\left (c^{2}\right )^{\frac {1}{4}} \sqrt {c \cot \left (b x +a \right )}\, \sqrt {2}+\sqrt {c^{2}}}{c \cot \left (b x +a \right )-\left (c^{2}\right )^{\frac {1}{4}} \sqrt {c \cot \left (b x +a \right )}\, \sqrt {2}+\sqrt {c^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {c \cot \left (b x +a \right )}}{\left (c^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {c \cot \left (b x +a \right )}}{\left (c^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8}\right )}{b}\) \(169\)
default \(-\frac {2 c \left (\frac {\left (c \cot \left (b x +a \right )\right )^{\frac {5}{2}}}{5}-c^{2} \sqrt {c \cot \left (b x +a \right )}+\frac {c^{2} \left (c^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {c \cot \left (b x +a \right )+\left (c^{2}\right )^{\frac {1}{4}} \sqrt {c \cot \left (b x +a \right )}\, \sqrt {2}+\sqrt {c^{2}}}{c \cot \left (b x +a \right )-\left (c^{2}\right )^{\frac {1}{4}} \sqrt {c \cot \left (b x +a \right )}\, \sqrt {2}+\sqrt {c^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {c \cot \left (b x +a \right )}}{\left (c^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {c \cot \left (b x +a \right )}}{\left (c^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8}\right )}{b}\) \(169\)

Input:

int((c*cot(b*x+a))^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-2/b*c*(1/5*(c*cot(b*x+a))^(5/2)-c^2*(c*cot(b*x+a))^(1/2)+1/8*c^2*(c^2)^(1 
/4)*2^(1/2)*(ln((c*cot(b*x+a)+(c^2)^(1/4)*(c*cot(b*x+a))^(1/2)*2^(1/2)+(c^ 
2)^(1/2))/(c*cot(b*x+a)-(c^2)^(1/4)*(c*cot(b*x+a))^(1/2)*2^(1/2)+(c^2)^(1/ 
2)))+2*arctan(2^(1/2)/(c^2)^(1/4)*(c*cot(b*x+a))^(1/2)+1)-2*arctan(-2^(1/2 
)/(c^2)^(1/4)*(c*cot(b*x+a))^(1/2)+1)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 426 vs. \(2 (140) = 280\).

Time = 0.10 (sec) , antiderivative size = 426, normalized size of antiderivative = 2.41 \[ \int (c \cot (a+b x))^{7/2} \, dx=-\frac {10 \, \sqrt {2} {\left (c^{3} \cos \left (2 \, b x + 2 \, a\right ) - c^{3}\right )} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {\frac {c \cos \left (2 \, b x + 2 \, a\right ) + c}{\sin \left (2 \, b x + 2 \, a\right )}} + c}{c}\right ) + 10 \, \sqrt {2} {\left (c^{3} \cos \left (2 \, b x + 2 \, a\right ) - c^{3}\right )} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {\frac {c \cos \left (2 \, b x + 2 \, a\right ) + c}{\sin \left (2 \, b x + 2 \, a\right )}} - c}{c}\right ) + 5 \, \sqrt {2} {\left (c^{3} \cos \left (2 \, b x + 2 \, a\right ) - c^{3}\right )} \sqrt {c} \log \left (\frac {\sqrt {2} \sqrt {c} \sqrt {\frac {c \cos \left (2 \, b x + 2 \, a\right ) + c}{\sin \left (2 \, b x + 2 \, a\right )}} \sin \left (2 \, b x + 2 \, a\right ) + c \cos \left (2 \, b x + 2 \, a\right ) + c \sin \left (2 \, b x + 2 \, a\right ) + c}{\sin \left (2 \, b x + 2 \, a\right )}\right ) - 5 \, \sqrt {2} {\left (c^{3} \cos \left (2 \, b x + 2 \, a\right ) - c^{3}\right )} \sqrt {c} \log \left (-\frac {\sqrt {2} \sqrt {c} \sqrt {\frac {c \cos \left (2 \, b x + 2 \, a\right ) + c}{\sin \left (2 \, b x + 2 \, a\right )}} \sin \left (2 \, b x + 2 \, a\right ) - c \cos \left (2 \, b x + 2 \, a\right ) - c \sin \left (2 \, b x + 2 \, a\right ) - c}{\sin \left (2 \, b x + 2 \, a\right )}\right ) - 16 \, {\left (3 \, c^{3} \cos \left (2 \, b x + 2 \, a\right ) - 2 \, c^{3}\right )} \sqrt {\frac {c \cos \left (2 \, b x + 2 \, a\right ) + c}{\sin \left (2 \, b x + 2 \, a\right )}}}{20 \, {\left (b \cos \left (2 \, b x + 2 \, a\right ) - b\right )}} \] Input:

integrate((c*cot(b*x+a))^(7/2),x, algorithm="fricas")
 

Output:

-1/20*(10*sqrt(2)*(c^3*cos(2*b*x + 2*a) - c^3)*sqrt(c)*arctan((sqrt(2)*sqr 
t(c)*sqrt((c*cos(2*b*x + 2*a) + c)/sin(2*b*x + 2*a)) + c)/c) + 10*sqrt(2)* 
(c^3*cos(2*b*x + 2*a) - c^3)*sqrt(c)*arctan((sqrt(2)*sqrt(c)*sqrt((c*cos(2 
*b*x + 2*a) + c)/sin(2*b*x + 2*a)) - c)/c) + 5*sqrt(2)*(c^3*cos(2*b*x + 2* 
a) - c^3)*sqrt(c)*log((sqrt(2)*sqrt(c)*sqrt((c*cos(2*b*x + 2*a) + c)/sin(2 
*b*x + 2*a))*sin(2*b*x + 2*a) + c*cos(2*b*x + 2*a) + c*sin(2*b*x + 2*a) + 
c)/sin(2*b*x + 2*a)) - 5*sqrt(2)*(c^3*cos(2*b*x + 2*a) - c^3)*sqrt(c)*log( 
-(sqrt(2)*sqrt(c)*sqrt((c*cos(2*b*x + 2*a) + c)/sin(2*b*x + 2*a))*sin(2*b* 
x + 2*a) - c*cos(2*b*x + 2*a) - c*sin(2*b*x + 2*a) - c)/sin(2*b*x + 2*a)) 
- 16*(3*c^3*cos(2*b*x + 2*a) - 2*c^3)*sqrt((c*cos(2*b*x + 2*a) + c)/sin(2* 
b*x + 2*a)))/(b*cos(2*b*x + 2*a) - b)
 

Sympy [F]

\[ \int (c \cot (a+b x))^{7/2} \, dx=\int \left (c \cot {\left (a + b x \right )}\right )^{\frac {7}{2}}\, dx \] Input:

integrate((c*cot(b*x+a))**(7/2),x)
 

Output:

Integral((c*cot(a + b*x))**(7/2), x)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.11 \[ \int (c \cot (a+b x))^{7/2} \, dx=-\frac {{\left (10 \, \sqrt {2} c^{\frac {5}{2}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {c} + 2 \, \sqrt {\frac {c}{\tan \left (b x + a\right )}}\right )}}{2 \, \sqrt {c}}\right ) + 10 \, \sqrt {2} c^{\frac {5}{2}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {c} - 2 \, \sqrt {\frac {c}{\tan \left (b x + a\right )}}\right )}}{2 \, \sqrt {c}}\right ) + 5 \, \sqrt {2} c^{\frac {5}{2}} \log \left (\sqrt {2} \sqrt {c} \sqrt {\frac {c}{\tan \left (b x + a\right )}} + c + \frac {c}{\tan \left (b x + a\right )}\right ) - 5 \, \sqrt {2} c^{\frac {5}{2}} \log \left (-\sqrt {2} \sqrt {c} \sqrt {\frac {c}{\tan \left (b x + a\right )}} + c + \frac {c}{\tan \left (b x + a\right )}\right ) - 40 \, c^{2} \sqrt {\frac {c}{\tan \left (b x + a\right )}} + 8 \, \left (\frac {c}{\tan \left (b x + a\right )}\right )^{\frac {5}{2}}\right )} c}{20 \, b} \] Input:

integrate((c*cot(b*x+a))^(7/2),x, algorithm="maxima")
 

Output:

-1/20*(10*sqrt(2)*c^(5/2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(c) + 2*sqrt(c/t 
an(b*x + a)))/sqrt(c)) + 10*sqrt(2)*c^(5/2)*arctan(-1/2*sqrt(2)*(sqrt(2)*s 
qrt(c) - 2*sqrt(c/tan(b*x + a)))/sqrt(c)) + 5*sqrt(2)*c^(5/2)*log(sqrt(2)* 
sqrt(c)*sqrt(c/tan(b*x + a)) + c + c/tan(b*x + a)) - 5*sqrt(2)*c^(5/2)*log 
(-sqrt(2)*sqrt(c)*sqrt(c/tan(b*x + a)) + c + c/tan(b*x + a)) - 40*c^2*sqrt 
(c/tan(b*x + a)) + 8*(c/tan(b*x + a))^(5/2))*c/b
 

Giac [F]

\[ \int (c \cot (a+b x))^{7/2} \, dx=\int { \left (c \cot \left (b x + a\right )\right )^{\frac {7}{2}} \,d x } \] Input:

integrate((c*cot(b*x+a))^(7/2),x, algorithm="giac")
 

Output:

integrate((c*cot(b*x + a))^(7/2), x)
 

Mupad [B] (verification not implemented)

Time = 9.40 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.51 \[ \int (c \cot (a+b x))^{7/2} \, dx=\frac {2\,c^3\,\sqrt {c\,\mathrm {cot}\left (a+b\,x\right )}}{b}-\frac {2\,c\,{\left (c\,\mathrm {cot}\left (a+b\,x\right )\right )}^{5/2}}{5\,b}+\frac {{\left (-1\right )}^{1/4}\,c^{7/2}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {c\,\mathrm {cot}\left (a+b\,x\right )}}{\sqrt {c}}\right )\,1{}\mathrm {i}}{b}+\frac {{\left (-1\right )}^{1/4}\,c^{7/2}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {c\,\mathrm {cot}\left (a+b\,x\right )}\,1{}\mathrm {i}}{\sqrt {c}}\right )}{b} \] Input:

int((c*cot(a + b*x))^(7/2),x)
 

Output:

(2*c^3*(c*cot(a + b*x))^(1/2))/b - (2*c*(c*cot(a + b*x))^(5/2))/(5*b) + (( 
-1)^(1/4)*c^(7/2)*atan(((-1)^(1/4)*(c*cot(a + b*x))^(1/2))/c^(1/2))*1i)/b 
+ ((-1)^(1/4)*c^(7/2)*atan(((-1)^(1/4)*(c*cot(a + b*x))^(1/2)*1i)/c^(1/2)) 
)/b
 

Reduce [F]

\[ \int (c \cot (a+b x))^{7/2} \, dx=\frac {\sqrt {c}\, c^{3} \left (-2 \sqrt {\cot \left (b x +a \right )}\, \cot \left (b x +a \right )^{2}+10 \sqrt {\cot \left (b x +a \right )}+5 \left (\int \frac {\sqrt {\cot \left (b x +a \right )}}{\cot \left (b x +a \right )}d x \right ) b \right )}{5 b} \] Input:

int((c*cot(b*x+a))^(7/2),x)
 

Output:

(sqrt(c)*c**3*( - 2*sqrt(cot(a + b*x))*cot(a + b*x)**2 + 10*sqrt(cot(a + b 
*x)) + 5*int(sqrt(cot(a + b*x))/cot(a + b*x),x)*b))/(5*b)