\(\int \frac {\sec ^3(x)}{a+b \cot (x)} \, dx\) [14]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 79 \[ \int \frac {\sec ^3(x)}{a+b \cot (x)} \, dx=\frac {\text {arctanh}(\sin (x))}{2 a}+\frac {b^2 \text {arctanh}(\sin (x))}{a^3}+\frac {b \sqrt {a^2+b^2} \text {arctanh}\left (\frac {a \cos (x)-b \sin (x)}{\sqrt {a^2+b^2}}\right )}{a^3}-\frac {b \sec (x)}{a^2}+\frac {\sec (x) \tan (x)}{2 a} \] Output:

1/2*arctanh(sin(x))/a+b^2*arctanh(sin(x))/a^3+b*(a^2+b^2)^(1/2)*arctanh((a 
*cos(x)-b*sin(x))/(a^2+b^2)^(1/2))/a^3-b*sec(x)/a^2+1/2*sec(x)*tan(x)/a
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(192\) vs. \(2(79)=158\).

Time = 0.48 (sec) , antiderivative size = 192, normalized size of antiderivative = 2.43 \[ \int \frac {\sec ^3(x)}{a+b \cot (x)} \, dx=-\frac {8 b \sqrt {a^2+b^2} \text {arctanh}\left (\frac {-a+b \tan \left (\frac {x}{2}\right )}{\sqrt {a^2+b^2}}\right )+\sec ^2(x) \left (4 a b \cos (x)+a^2 \log \left (\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )\right )+2 b^2 \log \left (\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )\right )+\left (a^2+2 b^2\right ) \cos (2 x) \left (\log \left (\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )\right )-\log \left (\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )\right )-a^2 \log \left (\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )-2 b^2 \log \left (\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )-2 a^2 \sin (x)\right )}{4 a^3} \] Input:

Integrate[Sec[x]^3/(a + b*Cot[x]),x]
 

Output:

-1/4*(8*b*Sqrt[a^2 + b^2]*ArcTanh[(-a + b*Tan[x/2])/Sqrt[a^2 + b^2]] + Sec 
[x]^2*(4*a*b*Cos[x] + a^2*Log[Cos[x/2] - Sin[x/2]] + 2*b^2*Log[Cos[x/2] - 
Sin[x/2]] + (a^2 + 2*b^2)*Cos[2*x]*(Log[Cos[x/2] - Sin[x/2]] - Log[Cos[x/2 
] + Sin[x/2]]) - a^2*Log[Cos[x/2] + Sin[x/2]] - 2*b^2*Log[Cos[x/2] + Sin[x 
/2]] - 2*a^2*Sin[x]))/a^3
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.538, Rules used = {3042, 4001, 25, 25, 3042, 3589, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^3(x)}{a+b \cot (x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (x+\frac {\pi }{2}\right )^3 \left (a-b \tan \left (x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 4001

\(\displaystyle \int -\frac {\tan (x) \sec ^2(x)}{-a \sin (x)-b \cos (x)}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int -\frac {\sec ^2(x) \tan (x)}{b \cos (x)+a \sin (x)}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {\tan (x) \sec ^2(x)}{a \sin (x)+b \cos (x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (x)}{\cos (x)^3 (a \sin (x)+b \cos (x))}dx\)

\(\Big \downarrow \) 3589

\(\displaystyle \int \left (\frac {\sec ^3(x)}{a}-\frac {b \sec ^2(x)}{a (a \sin (x)+b \cos (x))}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {b^2 \text {arctanh}(\sin (x))}{a^3}-\frac {b \sec (x)}{a^2}+\frac {b \sqrt {a^2+b^2} \text {arctanh}\left (\frac {a \cos (x)-b \sin (x)}{\sqrt {a^2+b^2}}\right )}{a^3}+\frac {\text {arctanh}(\sin (x))}{2 a}+\frac {\tan (x) \sec (x)}{2 a}\)

Input:

Int[Sec[x]^3/(a + b*Cot[x]),x]
 

Output:

ArcTanh[Sin[x]]/(2*a) + (b^2*ArcTanh[Sin[x]])/a^3 + (b*Sqrt[a^2 + b^2]*Arc 
Tanh[(a*Cos[x] - b*Sin[x])/Sqrt[a^2 + b^2]])/a^3 - (b*Sec[x])/a^2 + (Sec[x 
]*Tan[x])/(2*a)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3589
Int[(cos[(c_.) + (d_.)*(x_)]^(m_.)*sin[(c_.) + (d_.)*(x_)]^(n_.))/(cos[(c_. 
) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :> Int[Ex 
pandTrig[cos[c + d*x]^m*(sin[c + d*x]^n/(a*cos[c + d*x] + b*sin[c + d*x])), 
 x], x] /; FreeQ[{a, b, c, d, m, n}, x] && IntegersQ[m, n]
 

rule 4001
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n 
_.), x_Symbol] :> Int[Sin[e + f*x]^m*((a*Cos[e + f*x] + b*Sin[e + f*x])^n/C 
os[e + f*x]^n), x] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && ILtQ 
[n, 0] && ((LtQ[m, 5] && GtQ[n, -4]) || (EqQ[m, 5] && EqQ[n, -1]))
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(149\) vs. \(2(71)=142\).

Time = 1.49 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.90

method result size
default \(\frac {2 b \sqrt {a^{2}+b^{2}}\, \operatorname {arctanh}\left (\frac {-2 b \tan \left (\frac {x}{2}\right )+2 a}{2 \sqrt {a^{2}+b^{2}}}\right )}{a^{3}}+\frac {1}{2 a \left (\tan \left (\frac {x}{2}\right )-1\right )^{2}}-\frac {-a -2 b}{2 a^{2} \left (\tan \left (\frac {x}{2}\right )-1\right )}+\frac {\left (-a^{2}-2 b^{2}\right ) \ln \left (\tan \left (\frac {x}{2}\right )-1\right )}{2 a^{3}}-\frac {1}{2 a \left (\tan \left (\frac {x}{2}\right )+1\right )^{2}}-\frac {-a +2 b}{2 a^{2} \left (\tan \left (\frac {x}{2}\right )+1\right )}+\frac {\left (a^{2}+2 b^{2}\right ) \ln \left (\tan \left (\frac {x}{2}\right )+1\right )}{2 a^{3}}\) \(150\)
risch \(-\frac {{\mathrm e}^{i x} \left (i a \,{\mathrm e}^{2 i x}+2 b \,{\mathrm e}^{2 i x}-i a +2 b \right )}{\left ({\mathrm e}^{2 i x}+1\right )^{2} a^{2}}-\frac {\ln \left ({\mathrm e}^{i x}-i\right )}{2 a}-\frac {\ln \left ({\mathrm e}^{i x}-i\right ) b^{2}}{a^{3}}+\frac {\ln \left ({\mathrm e}^{i x}+i\right )}{2 a}+\frac {\ln \left ({\mathrm e}^{i x}+i\right ) b^{2}}{a^{3}}+\frac {\sqrt {a^{2}+b^{2}}\, b \ln \left ({\mathrm e}^{i x}-\frac {i b -a}{\sqrt {a^{2}+b^{2}}}\right )}{a^{3}}-\frac {\sqrt {a^{2}+b^{2}}\, b \ln \left ({\mathrm e}^{i x}+\frac {i b -a}{\sqrt {a^{2}+b^{2}}}\right )}{a^{3}}\) \(193\)

Input:

int(sec(x)^3/(a+b*cot(x)),x,method=_RETURNVERBOSE)
 

Output:

2*b*(a^2+b^2)^(1/2)/a^3*arctanh(1/2*(-2*b*tan(1/2*x)+2*a)/(a^2+b^2)^(1/2)) 
+1/2/a/(tan(1/2*x)-1)^2-1/2*(-a-2*b)/a^2/(tan(1/2*x)-1)+1/2/a^3*(-a^2-2*b^ 
2)*ln(tan(1/2*x)-1)-1/2/a/(tan(1/2*x)+1)^2-1/2*(-a+2*b)/a^2/(tan(1/2*x)+1) 
+1/2*(a^2+2*b^2)/a^3*ln(tan(1/2*x)+1)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 166 vs. \(2 (71) = 142\).

Time = 0.14 (sec) , antiderivative size = 166, normalized size of antiderivative = 2.10 \[ \int \frac {\sec ^3(x)}{a+b \cot (x)} \, dx=\frac {2 \, \sqrt {a^{2} + b^{2}} b \cos \left (x\right )^{2} \log \left (\frac {2 \, a b \cos \left (x\right ) \sin \left (x\right ) - {\left (a^{2} - b^{2}\right )} \cos \left (x\right )^{2} - a^{2} - 2 \, b^{2} - 2 \, \sqrt {a^{2} + b^{2}} {\left (a \cos \left (x\right ) - b \sin \left (x\right )\right )}}{2 \, a b \cos \left (x\right ) \sin \left (x\right ) - {\left (a^{2} - b^{2}\right )} \cos \left (x\right )^{2} + a^{2}}\right ) + {\left (a^{2} + 2 \, b^{2}\right )} \cos \left (x\right )^{2} \log \left (\sin \left (x\right ) + 1\right ) - {\left (a^{2} + 2 \, b^{2}\right )} \cos \left (x\right )^{2} \log \left (-\sin \left (x\right ) + 1\right ) - 4 \, a b \cos \left (x\right ) + 2 \, a^{2} \sin \left (x\right )}{4 \, a^{3} \cos \left (x\right )^{2}} \] Input:

integrate(sec(x)^3/(a+b*cot(x)),x, algorithm="fricas")
 

Output:

1/4*(2*sqrt(a^2 + b^2)*b*cos(x)^2*log((2*a*b*cos(x)*sin(x) - (a^2 - b^2)*c 
os(x)^2 - a^2 - 2*b^2 - 2*sqrt(a^2 + b^2)*(a*cos(x) - b*sin(x)))/(2*a*b*co 
s(x)*sin(x) - (a^2 - b^2)*cos(x)^2 + a^2)) + (a^2 + 2*b^2)*cos(x)^2*log(si 
n(x) + 1) - (a^2 + 2*b^2)*cos(x)^2*log(-sin(x) + 1) - 4*a*b*cos(x) + 2*a^2 
*sin(x))/(a^3*cos(x)^2)
 

Sympy [F]

\[ \int \frac {\sec ^3(x)}{a+b \cot (x)} \, dx=\int \frac {\sec ^{3}{\left (x \right )}}{a + b \cot {\left (x \right )}}\, dx \] Input:

integrate(sec(x)**3/(a+b*cot(x)),x)
 

Output:

Integral(sec(x)**3/(a + b*cot(x)), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 203 vs. \(2 (71) = 142\).

Time = 0.11 (sec) , antiderivative size = 203, normalized size of antiderivative = 2.57 \[ \int \frac {\sec ^3(x)}{a+b \cot (x)} \, dx=-\frac {2 \, b - \frac {a \sin \left (x\right )}{\cos \left (x\right ) + 1} - \frac {2 \, b \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} - \frac {a \sin \left (x\right )^{3}}{{\left (\cos \left (x\right ) + 1\right )}^{3}}}{a^{2} - \frac {2 \, a^{2} \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (x\right )^{4}}{{\left (\cos \left (x\right ) + 1\right )}^{4}}} + \frac {{\left (a^{2} + 2 \, b^{2}\right )} \log \left (\frac {\sin \left (x\right )}{\cos \left (x\right ) + 1} + 1\right )}{2 \, a^{3}} - \frac {{\left (a^{2} + 2 \, b^{2}\right )} \log \left (\frac {\sin \left (x\right )}{\cos \left (x\right ) + 1} - 1\right )}{2 \, a^{3}} + \frac {{\left (a^{2} b + b^{3}\right )} \log \left (\frac {a - \frac {b \sin \left (x\right )}{\cos \left (x\right ) + 1} + \sqrt {a^{2} + b^{2}}}{a - \frac {b \sin \left (x\right )}{\cos \left (x\right ) + 1} - \sqrt {a^{2} + b^{2}}}\right )}{\sqrt {a^{2} + b^{2}} a^{3}} \] Input:

integrate(sec(x)^3/(a+b*cot(x)),x, algorithm="maxima")
 

Output:

-(2*b - a*sin(x)/(cos(x) + 1) - 2*b*sin(x)^2/(cos(x) + 1)^2 - a*sin(x)^3/( 
cos(x) + 1)^3)/(a^2 - 2*a^2*sin(x)^2/(cos(x) + 1)^2 + a^2*sin(x)^4/(cos(x) 
 + 1)^4) + 1/2*(a^2 + 2*b^2)*log(sin(x)/(cos(x) + 1) + 1)/a^3 - 1/2*(a^2 + 
 2*b^2)*log(sin(x)/(cos(x) + 1) - 1)/a^3 + (a^2*b + b^3)*log((a - b*sin(x) 
/(cos(x) + 1) + sqrt(a^2 + b^2))/(a - b*sin(x)/(cos(x) + 1) - sqrt(a^2 + b 
^2)))/(sqrt(a^2 + b^2)*a^3)
                                                                                    
                                                                                    
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 158 vs. \(2 (71) = 142\).

Time = 0.15 (sec) , antiderivative size = 158, normalized size of antiderivative = 2.00 \[ \int \frac {\sec ^3(x)}{a+b \cot (x)} \, dx=\frac {{\left (a^{2} + 2 \, b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, x\right ) + 1 \right |}\right )}{2 \, a^{3}} - \frac {{\left (a^{2} + 2 \, b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, x\right ) - 1 \right |}\right )}{2 \, a^{3}} + \frac {{\left (a^{2} b + b^{3}\right )} \log \left (\frac {{\left | 2 \, b \tan \left (\frac {1}{2} \, x\right ) - 2 \, a - 2 \, \sqrt {a^{2} + b^{2}} \right |}}{{\left | 2 \, b \tan \left (\frac {1}{2} \, x\right ) - 2 \, a + 2 \, \sqrt {a^{2} + b^{2}} \right |}}\right )}{\sqrt {a^{2} + b^{2}} a^{3}} + \frac {a \tan \left (\frac {1}{2} \, x\right )^{3} + 2 \, b \tan \left (\frac {1}{2} \, x\right )^{2} + a \tan \left (\frac {1}{2} \, x\right ) - 2 \, b}{{\left (\tan \left (\frac {1}{2} \, x\right )^{2} - 1\right )}^{2} a^{2}} \] Input:

integrate(sec(x)^3/(a+b*cot(x)),x, algorithm="giac")
 

Output:

1/2*(a^2 + 2*b^2)*log(abs(tan(1/2*x) + 1))/a^3 - 1/2*(a^2 + 2*b^2)*log(abs 
(tan(1/2*x) - 1))/a^3 + (a^2*b + b^3)*log(abs(2*b*tan(1/2*x) - 2*a - 2*sqr 
t(a^2 + b^2))/abs(2*b*tan(1/2*x) - 2*a + 2*sqrt(a^2 + b^2)))/(sqrt(a^2 + b 
^2)*a^3) + (a*tan(1/2*x)^3 + 2*b*tan(1/2*x)^2 + a*tan(1/2*x) - 2*b)/((tan( 
1/2*x)^2 - 1)^2*a^2)
 

Mupad [B] (verification not implemented)

Time = 9.27 (sec) , antiderivative size = 346, normalized size of antiderivative = 4.38 \[ \int \frac {\sec ^3(x)}{a+b \cot (x)} \, dx=\frac {\frac {\mathrm {tan}\left (\frac {x}{2}\right )}{a}-\frac {2\,b}{a^2}+\frac {{\mathrm {tan}\left (\frac {x}{2}\right )}^3}{a}+\frac {2\,b\,{\mathrm {tan}\left (\frac {x}{2}\right )}^2}{a^2}}{{\mathrm {tan}\left (\frac {x}{2}\right )}^4-2\,{\mathrm {tan}\left (\frac {x}{2}\right )}^2+1}+\frac {\mathrm {atanh}\left (\frac {24\,b^3\,\mathrm {tan}\left (\frac {x}{2}\right )}{8\,a^2\,b+24\,b^3+\frac {16\,b^5}{a^2}}+\frac {16\,b^5\,\mathrm {tan}\left (\frac {x}{2}\right )}{8\,a^4\,b+24\,a^2\,b^3+16\,b^5}+\frac {8\,a\,b\,\mathrm {tan}\left (\frac {x}{2}\right )}{8\,a\,b+\frac {24\,b^3}{a}+\frac {16\,b^5}{a^3}}\right )\,\left (a^2+2\,b^2\right )}{a^3}-\frac {2\,b\,\mathrm {atanh}\left (\frac {16\,b^3\,\sqrt {a^2+b^2}}{32\,b^4\,\mathrm {tan}\left (\frac {x}{2}\right )+16\,a\,b^3+\frac {16\,b^5}{a}+32\,a^2\,b^2\,\mathrm {tan}\left (\frac {x}{2}\right )}+\frac {32\,b^2\,\mathrm {tan}\left (\frac {x}{2}\right )\,\sqrt {a^2+b^2}}{16\,b^3+\frac {16\,b^5}{a^2}+\frac {32\,b^4\,\mathrm {tan}\left (\frac {x}{2}\right )}{a}+32\,a\,b^2\,\mathrm {tan}\left (\frac {x}{2}\right )}+\frac {16\,b^4\,\mathrm {tan}\left (\frac {x}{2}\right )\,\sqrt {a^2+b^2}}{32\,\mathrm {tan}\left (\frac {x}{2}\right )\,a^3\,b^2+16\,a^2\,b^3+32\,\mathrm {tan}\left (\frac {x}{2}\right )\,a\,b^4+16\,b^5}\right )\,\sqrt {a^2+b^2}}{a^3} \] Input:

int(1/(cos(x)^3*(a + b*cot(x))),x)
 

Output:

(tan(x/2)/a - (2*b)/a^2 + tan(x/2)^3/a + (2*b*tan(x/2)^2)/a^2)/(tan(x/2)^4 
 - 2*tan(x/2)^2 + 1) + (atanh((24*b^3*tan(x/2))/(8*a^2*b + 24*b^3 + (16*b^ 
5)/a^2) + (16*b^5*tan(x/2))/(8*a^4*b + 16*b^5 + 24*a^2*b^3) + (8*a*b*tan(x 
/2))/(8*a*b + (24*b^3)/a + (16*b^5)/a^3))*(a^2 + 2*b^2))/a^3 - (2*b*atanh( 
(16*b^3*(a^2 + b^2)^(1/2))/(32*b^4*tan(x/2) + 16*a*b^3 + (16*b^5)/a + 32*a 
^2*b^2*tan(x/2)) + (32*b^2*tan(x/2)*(a^2 + b^2)^(1/2))/(16*b^3 + (16*b^5)/ 
a^2 + (32*b^4*tan(x/2))/a + 32*a*b^2*tan(x/2)) + (16*b^4*tan(x/2)*(a^2 + b 
^2)^(1/2))/(16*b^5 + 16*a^2*b^3 + 32*a^3*b^2*tan(x/2) + 32*a*b^4*tan(x/2)) 
)*(a^2 + b^2)^(1/2))/a^3
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 213, normalized size of antiderivative = 2.70 \[ \int \frac {\sec ^3(x)}{a+b \cot (x)} \, dx=\frac {4 \sqrt {a^{2}+b^{2}}\, \mathit {atan} \left (\frac {\tan \left (\frac {x}{2}\right ) b i -a i}{\sqrt {a^{2}+b^{2}}}\right ) \sin \left (x \right )^{2} b i -4 \sqrt {a^{2}+b^{2}}\, \mathit {atan} \left (\frac {\tan \left (\frac {x}{2}\right ) b i -a i}{\sqrt {a^{2}+b^{2}}}\right ) b i +2 \cos \left (x \right ) a b -\mathrm {log}\left (\tan \left (\frac {x}{2}\right )-1\right ) \sin \left (x \right )^{2} a^{2}-2 \,\mathrm {log}\left (\tan \left (\frac {x}{2}\right )-1\right ) \sin \left (x \right )^{2} b^{2}+\mathrm {log}\left (\tan \left (\frac {x}{2}\right )-1\right ) a^{2}+2 \,\mathrm {log}\left (\tan \left (\frac {x}{2}\right )-1\right ) b^{2}+\mathrm {log}\left (\tan \left (\frac {x}{2}\right )+1\right ) \sin \left (x \right )^{2} a^{2}+2 \,\mathrm {log}\left (\tan \left (\frac {x}{2}\right )+1\right ) \sin \left (x \right )^{2} b^{2}-\mathrm {log}\left (\tan \left (\frac {x}{2}\right )+1\right ) a^{2}-2 \,\mathrm {log}\left (\tan \left (\frac {x}{2}\right )+1\right ) b^{2}-\sin \left (x \right ) a^{2}}{2 a^{3} \left (\sin \left (x \right )^{2}-1\right )} \] Input:

int(sec(x)^3/(a+b*cot(x)),x)
 

Output:

(4*sqrt(a**2 + b**2)*atan((tan(x/2)*b*i - a*i)/sqrt(a**2 + b**2))*sin(x)** 
2*b*i - 4*sqrt(a**2 + b**2)*atan((tan(x/2)*b*i - a*i)/sqrt(a**2 + b**2))*b 
*i + 2*cos(x)*a*b - log(tan(x/2) - 1)*sin(x)**2*a**2 - 2*log(tan(x/2) - 1) 
*sin(x)**2*b**2 + log(tan(x/2) - 1)*a**2 + 2*log(tan(x/2) - 1)*b**2 + log( 
tan(x/2) + 1)*sin(x)**2*a**2 + 2*log(tan(x/2) + 1)*sin(x)**2*b**2 - log(ta 
n(x/2) + 1)*a**2 - 2*log(tan(x/2) + 1)*b**2 - sin(x)*a**2)/(2*a**3*(sin(x) 
**2 - 1))