\(\int \cot ^2(x) (1+\cot (x))^{3/2} \, dx\) [43]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-1)]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 13, antiderivative size = 139 \[ \int \cot ^2(x) (1+\cot (x))^{3/2} \, dx=-\sqrt {-1+\sqrt {2}} \arctan \left (\frac {3-2 \sqrt {2}+\left (1-\sqrt {2}\right ) \cot (x)}{\sqrt {2 \left (-7+5 \sqrt {2}\right )} \sqrt {1+\cot (x)}}\right )-\sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {3+2 \sqrt {2}+\left (1+\sqrt {2}\right ) \cot (x)}{\sqrt {2 \left (7+5 \sqrt {2}\right )} \sqrt {1+\cot (x)}}\right )+2 \sqrt {1+\cot (x)}-\frac {2}{5} (1+\cot (x))^{5/2} \] Output:

-(2^(1/2)-1)^(1/2)*arctan((3-2*2^(1/2)+(1-2^(1/2))*cot(x))/(-14+10*2^(1/2) 
)^(1/2)/(1+cot(x))^(1/2))-(1+2^(1/2))^(1/2)*arctanh((3+2*2^(1/2)+(1+2^(1/2 
))*cot(x))/(14+10*2^(1/2))^(1/2)/(1+cot(x))^(1/2))+2*(1+cot(x))^(1/2)-2/5* 
(1+cot(x))^(5/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.33 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.54 \[ \int \cot ^2(x) (1+\cot (x))^{3/2} \, dx=-\frac {2 \text {arctanh}\left (\frac {\sqrt {1+\cot (x)}}{\sqrt {1-i}}\right )}{\sqrt {1-i}}-\frac {2 \text {arctanh}\left (\frac {\sqrt {1+\cot (x)}}{\sqrt {1+i}}\right )}{\sqrt {1+i}}+2 \sqrt {1+\cot (x)}-\frac {2}{5} (1+\cot (x))^{5/2} \] Input:

Integrate[Cot[x]^2*(1 + Cot[x])^(3/2),x]
 

Output:

(-2*ArcTanh[Sqrt[1 + Cot[x]]/Sqrt[1 - I]])/Sqrt[1 - I] - (2*ArcTanh[Sqrt[1 
 + Cot[x]]/Sqrt[1 + I]])/Sqrt[1 + I] + 2*Sqrt[1 + Cot[x]] - (2*(1 + Cot[x] 
)^(5/2))/5
 

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.21, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.077, Rules used = {3042, 4026, 25, 3042, 3963, 27, 3042, 25, 4019, 25, 3042, 4018, 216, 220}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^2(x) (\cot (x)+1)^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (1-\tan \left (x+\frac {\pi }{2}\right )\right )^{3/2} \tan \left (x+\frac {\pi }{2}\right )^2dx\)

\(\Big \downarrow \) 4026

\(\displaystyle \int -(\cot (x)+1)^{3/2}dx-\frac {2}{5} (\cot (x)+1)^{5/2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\int (\cot (x)+1)^{3/2}dx-\frac {2}{5} (\cot (x)+1)^{5/2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\int \left (1-\tan \left (x+\frac {\pi }{2}\right )\right )^{3/2}dx-\frac {2}{5} (\cot (x)+1)^{5/2}\)

\(\Big \downarrow \) 3963

\(\displaystyle -\int \frac {2 \cot (x)}{\sqrt {\cot (x)+1}}dx-\frac {2}{5} (\cot (x)+1)^{5/2}+2 \sqrt {\cot (x)+1}\)

\(\Big \downarrow \) 27

\(\displaystyle -2 \int \frac {\cot (x)}{\sqrt {\cot (x)+1}}dx-\frac {2}{5} (\cot (x)+1)^{5/2}+2 \sqrt {\cot (x)+1}\)

\(\Big \downarrow \) 3042

\(\displaystyle -2 \int -\frac {\tan \left (x+\frac {\pi }{2}\right )}{\sqrt {1-\tan \left (x+\frac {\pi }{2}\right )}}dx-\frac {2}{5} (\cot (x)+1)^{5/2}+2 \sqrt {\cot (x)+1}\)

\(\Big \downarrow \) 25

\(\displaystyle 2 \int \frac {\tan \left (x+\frac {\pi }{2}\right )}{\sqrt {1-\tan \left (x+\frac {\pi }{2}\right )}}dx-\frac {2}{5} (\cot (x)+1)^{5/2}+2 \sqrt {\cot (x)+1}\)

\(\Big \downarrow \) 4019

\(\displaystyle 2 \left (\frac {\int -\frac {1-\left (1-\sqrt {2}\right ) \cot (x)}{\sqrt {\cot (x)+1}}dx}{2 \sqrt {2}}-\frac {\int -\frac {1-\left (1+\sqrt {2}\right ) \cot (x)}{\sqrt {\cot (x)+1}}dx}{2 \sqrt {2}}\right )-\frac {2}{5} (\cot (x)+1)^{5/2}+2 \sqrt {\cot (x)+1}\)

\(\Big \downarrow \) 25

\(\displaystyle 2 \left (\frac {\int \frac {1-\left (1+\sqrt {2}\right ) \cot (x)}{\sqrt {\cot (x)+1}}dx}{2 \sqrt {2}}-\frac {\int \frac {1-\left (1-\sqrt {2}\right ) \cot (x)}{\sqrt {\cot (x)+1}}dx}{2 \sqrt {2}}\right )-\frac {2}{5} (\cot (x)+1)^{5/2}+2 \sqrt {\cot (x)+1}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 \left (\frac {\int \frac {1-\left (-1-\sqrt {2}\right ) \tan \left (x+\frac {\pi }{2}\right )}{\sqrt {1-\tan \left (x+\frac {\pi }{2}\right )}}dx}{2 \sqrt {2}}-\frac {\int \frac {1-\left (-1+\sqrt {2}\right ) \tan \left (x+\frac {\pi }{2}\right )}{\sqrt {1-\tan \left (x+\frac {\pi }{2}\right )}}dx}{2 \sqrt {2}}\right )-\frac {2}{5} (\cot (x)+1)^{5/2}+2 \sqrt {\cot (x)+1}\)

\(\Big \downarrow \) 4018

\(\displaystyle 2 \left (\frac {\left (3-2 \sqrt {2}\right ) \int \frac {1}{\frac {\left (\left (1-\sqrt {2}\right ) \cot (x)-2 \sqrt {2}+3\right )^2}{\cot (x)+1}-2 \left (7-5 \sqrt {2}\right )}d\left (-\frac {\left (1-\sqrt {2}\right ) \cot (x)-2 \sqrt {2}+3}{\sqrt {\cot (x)+1}}\right )}{\sqrt {2}}-\frac {\left (3+2 \sqrt {2}\right ) \int \frac {1}{\frac {\left (\left (1+\sqrt {2}\right ) \cot (x)+2 \sqrt {2}+3\right )^2}{\cot (x)+1}-2 \left (7+5 \sqrt {2}\right )}d\left (-\frac {\left (1+\sqrt {2}\right ) \cot (x)+2 \sqrt {2}+3}{\sqrt {\cot (x)+1}}\right )}{\sqrt {2}}\right )-\frac {2}{5} (\cot (x)+1)^{5/2}+2 \sqrt {\cot (x)+1}\)

\(\Big \downarrow \) 216

\(\displaystyle 2 \left (-\frac {\left (3+2 \sqrt {2}\right ) \int \frac {1}{\frac {\left (\left (1+\sqrt {2}\right ) \cot (x)+2 \sqrt {2}+3\right )^2}{\cot (x)+1}-2 \left (7+5 \sqrt {2}\right )}d\left (-\frac {\left (1+\sqrt {2}\right ) \cot (x)+2 \sqrt {2}+3}{\sqrt {\cot (x)+1}}\right )}{\sqrt {2}}-\frac {\left (3-2 \sqrt {2}\right ) \arctan \left (\frac {\left (1-\sqrt {2}\right ) \cot (x)-2 \sqrt {2}+3}{\sqrt {2 \left (5 \sqrt {2}-7\right )} \sqrt {\cot (x)+1}}\right )}{2 \sqrt {5 \sqrt {2}-7}}\right )-\frac {2}{5} (\cot (x)+1)^{5/2}+2 \sqrt {\cot (x)+1}\)

\(\Big \downarrow \) 220

\(\displaystyle 2 \left (-\frac {\left (3-2 \sqrt {2}\right ) \arctan \left (\frac {\left (1-\sqrt {2}\right ) \cot (x)-2 \sqrt {2}+3}{\sqrt {2 \left (5 \sqrt {2}-7\right )} \sqrt {\cot (x)+1}}\right )}{2 \sqrt {5 \sqrt {2}-7}}-\frac {\left (3+2 \sqrt {2}\right ) \text {arctanh}\left (\frac {\left (1+\sqrt {2}\right ) \cot (x)+2 \sqrt {2}+3}{\sqrt {2 \left (7+5 \sqrt {2}\right )} \sqrt {\cot (x)+1}}\right )}{2 \sqrt {7+5 \sqrt {2}}}\right )-\frac {2}{5} (\cot (x)+1)^{5/2}+2 \sqrt {\cot (x)+1}\)

Input:

Int[Cot[x]^2*(1 + Cot[x])^(3/2),x]
 

Output:

2*(-1/2*((3 - 2*Sqrt[2])*ArcTan[(3 - 2*Sqrt[2] + (1 - Sqrt[2])*Cot[x])/(Sq 
rt[2*(-7 + 5*Sqrt[2])]*Sqrt[1 + Cot[x]])])/Sqrt[-7 + 5*Sqrt[2]] - ((3 + 2* 
Sqrt[2])*ArcTanh[(3 + 2*Sqrt[2] + (1 + Sqrt[2])*Cot[x])/(Sqrt[2*(7 + 5*Sqr 
t[2])]*Sqrt[1 + Cot[x]])])/(2*Sqrt[7 + 5*Sqrt[2]])) + 2*Sqrt[1 + Cot[x]] - 
 (2*(1 + Cot[x])^(5/2))/5
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 220
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(- 
1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && 
 (LtQ[a, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3963
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((a + 
b*Tan[c + d*x])^(n - 1)/(d*(n - 1))), x] + Int[(a^2 - b^2 + 2*a*b*Tan[c + d 
*x])*(a + b*Tan[c + d*x])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 
+ b^2, 0] && GtQ[n, 1]
 

rule 4018
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*tan[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[-2*(d^2/f)   Subst[Int[1/(2*b*c*d - 4*a*d^2 
+ x^2), x], x, (b*c - 2*a*d - b*d*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]]], 
x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0 
] && NeQ[c^2 + d^2, 0] && EqQ[2*a*c*d - b*(c^2 - d^2), 0]
 

rule 4019
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*tan[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> With[{q = Rt[a^2 + b^2, 2]}, Simp[1/(2*q)   Int[( 
a*c + b*d + c*q + (b*c - a*d + d*q)*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]], 
 x], x] - Simp[1/(2*q)   Int[(a*c + b*d - c*q + (b*c - a*d - d*q)*Tan[e + f 
*x])/Sqrt[a + b*Tan[e + f*x]], x], x]] /; FreeQ[{a, b, c, d, e, f}, x] && N 
eQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && NeQ[2*a*c*d - 
 b*(c^2 - d^2), 0] && NiceSqrtQ[a^2 + b^2]
 

rule 4026
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^2, x_Symbol] :> Simp[d^2*((a + b*Tan[e + f*x])^(m + 1)/(b*f*( 
m + 1))), x] + Int[(a + b*Tan[e + f*x])^m*Simp[c^2 - d^2 + 2*c*d*Tan[e + f* 
x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ 
[m, -1] &&  !(EqQ[m, 2] && EqQ[a, 0])
 
Maple [A] (verified)

Time = 0.15 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.42

method result size
derivativedivides \(-\frac {2 \left (1+\cot \left (x \right )\right )^{\frac {5}{2}}}{5}+2 \sqrt {1+\cot \left (x \right )}-\frac {\sqrt {2}\, \left (-\frac {\sqrt {2+2 \sqrt {2}}\, \ln \left (\cot \left (x \right )+1-\sqrt {1+\cot \left (x \right )}\, \sqrt {2+2 \sqrt {2}}+\sqrt {2}\right )}{2}+\frac {2 \left (1-\sqrt {2}\right ) \arctan \left (\frac {2 \sqrt {1+\cot \left (x \right )}-\sqrt {2+2 \sqrt {2}}}{\sqrt {-2+2 \sqrt {2}}}\right )}{\sqrt {-2+2 \sqrt {2}}}\right )}{2}-\frac {\sqrt {2}\, \left (\frac {\sqrt {2+2 \sqrt {2}}\, \ln \left (\cot \left (x \right )+1+\sqrt {1+\cot \left (x \right )}\, \sqrt {2+2 \sqrt {2}}+\sqrt {2}\right )}{2}+\frac {2 \left (1-\sqrt {2}\right ) \arctan \left (\frac {\sqrt {2+2 \sqrt {2}}+2 \sqrt {1+\cot \left (x \right )}}{\sqrt {-2+2 \sqrt {2}}}\right )}{\sqrt {-2+2 \sqrt {2}}}\right )}{2}\) \(197\)
default \(-\frac {2 \left (1+\cot \left (x \right )\right )^{\frac {5}{2}}}{5}+2 \sqrt {1+\cot \left (x \right )}-\frac {\sqrt {2}\, \left (-\frac {\sqrt {2+2 \sqrt {2}}\, \ln \left (\cot \left (x \right )+1-\sqrt {1+\cot \left (x \right )}\, \sqrt {2+2 \sqrt {2}}+\sqrt {2}\right )}{2}+\frac {2 \left (1-\sqrt {2}\right ) \arctan \left (\frac {2 \sqrt {1+\cot \left (x \right )}-\sqrt {2+2 \sqrt {2}}}{\sqrt {-2+2 \sqrt {2}}}\right )}{\sqrt {-2+2 \sqrt {2}}}\right )}{2}-\frac {\sqrt {2}\, \left (\frac {\sqrt {2+2 \sqrt {2}}\, \ln \left (\cot \left (x \right )+1+\sqrt {1+\cot \left (x \right )}\, \sqrt {2+2 \sqrt {2}}+\sqrt {2}\right )}{2}+\frac {2 \left (1-\sqrt {2}\right ) \arctan \left (\frac {\sqrt {2+2 \sqrt {2}}+2 \sqrt {1+\cot \left (x \right )}}{\sqrt {-2+2 \sqrt {2}}}\right )}{\sqrt {-2+2 \sqrt {2}}}\right )}{2}\) \(197\)

Input:

int(cot(x)^2*(1+cot(x))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-2/5*(1+cot(x))^(5/2)+2*(1+cot(x))^(1/2)-1/2*2^(1/2)*(-1/2*(2+2*2^(1/2))^( 
1/2)*ln(cot(x)+1-(1+cot(x))^(1/2)*(2+2*2^(1/2))^(1/2)+2^(1/2))+2*(1-2^(1/2 
))/(-2+2*2^(1/2))^(1/2)*arctan((2*(1+cot(x))^(1/2)-(2+2*2^(1/2))^(1/2))/(- 
2+2*2^(1/2))^(1/2)))-1/2*2^(1/2)*(1/2*(2+2*2^(1/2))^(1/2)*ln(cot(x)+1+(1+c 
ot(x))^(1/2)*(2+2*2^(1/2))^(1/2)+2^(1/2))+2*(1-2^(1/2))/(-2+2*2^(1/2))^(1/ 
2)*arctan(((2+2*2^(1/2))^(1/2)+2*(1+cot(x))^(1/2))/(-2+2*2^(1/2))^(1/2)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 325 vs. \(2 (100) = 200\).

Time = 0.08 (sec) , antiderivative size = 325, normalized size of antiderivative = 2.34 \[ \int \cot ^2(x) (1+\cot (x))^{3/2} \, dx=\frac {10 \, \sqrt {\sqrt {2} - 1} {\left (\cos \left (2 \, x\right ) - 1\right )} \arctan \left ({\left (\sqrt {2} + 1\right )}^{\frac {3}{2}} \sqrt {\sqrt {2} - 1} + {\left (\sqrt {2} + 2\right )} \sqrt {\sqrt {2} - 1} \sqrt {\frac {\cos \left (2 \, x\right ) + \sin \left (2 \, x\right ) + 1}{\sin \left (2 \, x\right )}}\right ) + 10 \, \sqrt {\sqrt {2} - 1} {\left (\cos \left (2 \, x\right ) - 1\right )} \arctan \left (-{\left (\sqrt {2} + 1\right )}^{\frac {3}{2}} \sqrt {\sqrt {2} - 1} + {\left (\sqrt {2} + 2\right )} \sqrt {\sqrt {2} - 1} \sqrt {\frac {\cos \left (2 \, x\right ) + \sin \left (2 \, x\right ) + 1}{\sin \left (2 \, x\right )}}\right ) - 5 \, \sqrt {\sqrt {2} + 1} {\left (\cos \left (2 \, x\right ) - 1\right )} \log \left (\frac {\sqrt {2} \sqrt {\sqrt {2} + 1} \sqrt {\frac {\cos \left (2 \, x\right ) + \sin \left (2 \, x\right ) + 1}{\sin \left (2 \, x\right )}} \sin \left (2 \, x\right ) + {\left (\sqrt {2} + 1\right )} \sin \left (2 \, x\right ) + \cos \left (2 \, x\right ) + 1}{\sin \left (2 \, x\right )}\right ) + 5 \, \sqrt {\sqrt {2} + 1} {\left (\cos \left (2 \, x\right ) - 1\right )} \log \left (-\frac {\sqrt {2} \sqrt {\sqrt {2} + 1} \sqrt {\frac {\cos \left (2 \, x\right ) + \sin \left (2 \, x\right ) + 1}{\sin \left (2 \, x\right )}} \sin \left (2 \, x\right ) - {\left (\sqrt {2} + 1\right )} \sin \left (2 \, x\right ) - \cos \left (2 \, x\right ) - 1}{\sin \left (2 \, x\right )}\right ) + 4 \, \sqrt {\frac {\cos \left (2 \, x\right ) + \sin \left (2 \, x\right ) + 1}{\sin \left (2 \, x\right )}} {\left (5 \, \cos \left (2 \, x\right ) + 2 \, \sin \left (2 \, x\right ) - 3\right )}}{10 \, {\left (\cos \left (2 \, x\right ) - 1\right )}} \] Input:

integrate(cot(x)^2*(1+cot(x))^(3/2),x, algorithm="fricas")
 

Output:

1/10*(10*sqrt(sqrt(2) - 1)*(cos(2*x) - 1)*arctan((sqrt(2) + 1)^(3/2)*sqrt( 
sqrt(2) - 1) + (sqrt(2) + 2)*sqrt(sqrt(2) - 1)*sqrt((cos(2*x) + sin(2*x) + 
 1)/sin(2*x))) + 10*sqrt(sqrt(2) - 1)*(cos(2*x) - 1)*arctan(-(sqrt(2) + 1) 
^(3/2)*sqrt(sqrt(2) - 1) + (sqrt(2) + 2)*sqrt(sqrt(2) - 1)*sqrt((cos(2*x) 
+ sin(2*x) + 1)/sin(2*x))) - 5*sqrt(sqrt(2) + 1)*(cos(2*x) - 1)*log((sqrt( 
2)*sqrt(sqrt(2) + 1)*sqrt((cos(2*x) + sin(2*x) + 1)/sin(2*x))*sin(2*x) + ( 
sqrt(2) + 1)*sin(2*x) + cos(2*x) + 1)/sin(2*x)) + 5*sqrt(sqrt(2) + 1)*(cos 
(2*x) - 1)*log(-(sqrt(2)*sqrt(sqrt(2) + 1)*sqrt((cos(2*x) + sin(2*x) + 1)/ 
sin(2*x))*sin(2*x) - (sqrt(2) + 1)*sin(2*x) - cos(2*x) - 1)/sin(2*x)) + 4* 
sqrt((cos(2*x) + sin(2*x) + 1)/sin(2*x))*(5*cos(2*x) + 2*sin(2*x) - 3))/(c 
os(2*x) - 1)
 

Sympy [F]

\[ \int \cot ^2(x) (1+\cot (x))^{3/2} \, dx=\int \left (\cot {\left (x \right )} + 1\right )^{\frac {3}{2}} \cot ^{2}{\left (x \right )}\, dx \] Input:

integrate(cot(x)**2*(1+cot(x))**(3/2),x)
 

Output:

Integral((cot(x) + 1)**(3/2)*cot(x)**2, x)
 

Maxima [F(-1)]

Timed out. \[ \int \cot ^2(x) (1+\cot (x))^{3/2} \, dx=\text {Timed out} \] Input:

integrate(cot(x)^2*(1+cot(x))^(3/2),x, algorithm="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \cot ^2(x) (1+\cot (x))^{3/2} \, dx=\int { {\left (\cot \left (x\right ) + 1\right )}^{\frac {3}{2}} \cot \left (x\right )^{2} \,d x } \] Input:

integrate(cot(x)^2*(1+cot(x))^(3/2),x, algorithm="giac")
 

Output:

integrate((cot(x) + 1)^(3/2)*cot(x)^2, x)
 

Mupad [B] (verification not implemented)

Time = 10.08 (sec) , antiderivative size = 254, normalized size of antiderivative = 1.83 \[ \int \cot ^2(x) (1+\cot (x))^{3/2} \, dx=\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {\frac {1}{4}-\frac {\sqrt {2}}{4}}\,\sqrt {\mathrm {cot}\left (x\right )+1}\,64{}\mathrm {i}}{256\,\sqrt {\frac {1}{4}-\frac {\sqrt {2}}{4}}\,\sqrt {\frac {\sqrt {2}}{4}+\frac {1}{4}}-64}-\frac {\sqrt {2}\,\sqrt {\frac {\sqrt {2}}{4}+\frac {1}{4}}\,\sqrt {\mathrm {cot}\left (x\right )+1}\,64{}\mathrm {i}}{256\,\sqrt {\frac {1}{4}-\frac {\sqrt {2}}{4}}\,\sqrt {\frac {\sqrt {2}}{4}+\frac {1}{4}}-64}\right )\,\left (\sqrt {\frac {1}{4}-\frac {\sqrt {2}}{4}}\,2{}\mathrm {i}+\sqrt {\frac {\sqrt {2}}{4}+\frac {1}{4}}\,2{}\mathrm {i}\right )-\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {\frac {1}{4}-\frac {\sqrt {2}}{4}}\,\sqrt {\mathrm {cot}\left (x\right )+1}\,64{}\mathrm {i}}{256\,\sqrt {\frac {1}{4}-\frac {\sqrt {2}}{4}}\,\sqrt {\frac {\sqrt {2}}{4}+\frac {1}{4}}+64}+\frac {\sqrt {2}\,\sqrt {\frac {\sqrt {2}}{4}+\frac {1}{4}}\,\sqrt {\mathrm {cot}\left (x\right )+1}\,64{}\mathrm {i}}{256\,\sqrt {\frac {1}{4}-\frac {\sqrt {2}}{4}}\,\sqrt {\frac {\sqrt {2}}{4}+\frac {1}{4}}+64}\right )\,\left (\sqrt {\frac {1}{4}-\frac {\sqrt {2}}{4}}\,2{}\mathrm {i}-\sqrt {\frac {\sqrt {2}}{4}+\frac {1}{4}}\,2{}\mathrm {i}\right )+2\,\sqrt {\mathrm {cot}\left (x\right )+1}-\frac {2\,{\left (\mathrm {cot}\left (x\right )+1\right )}^{5/2}}{5} \] Input:

int(cot(x)^2*(cot(x) + 1)^(3/2),x)
 

Output:

atan((2^(1/2)*(1/4 - 2^(1/2)/4)^(1/2)*(cot(x) + 1)^(1/2)*64i)/(256*(1/4 - 
2^(1/2)/4)^(1/2)*(2^(1/2)/4 + 1/4)^(1/2) - 64) - (2^(1/2)*(2^(1/2)/4 + 1/4 
)^(1/2)*(cot(x) + 1)^(1/2)*64i)/(256*(1/4 - 2^(1/2)/4)^(1/2)*(2^(1/2)/4 + 
1/4)^(1/2) - 64))*((1/4 - 2^(1/2)/4)^(1/2)*2i + (2^(1/2)/4 + 1/4)^(1/2)*2i 
) - atan((2^(1/2)*(1/4 - 2^(1/2)/4)^(1/2)*(cot(x) + 1)^(1/2)*64i)/(256*(1/ 
4 - 2^(1/2)/4)^(1/2)*(2^(1/2)/4 + 1/4)^(1/2) + 64) + (2^(1/2)*(2^(1/2)/4 + 
 1/4)^(1/2)*(cot(x) + 1)^(1/2)*64i)/(256*(1/4 - 2^(1/2)/4)^(1/2)*(2^(1/2)/ 
4 + 1/4)^(1/2) + 64))*((1/4 - 2^(1/2)/4)^(1/2)*2i - (2^(1/2)/4 + 1/4)^(1/2 
)*2i) + 2*(cot(x) + 1)^(1/2) - (2*(cot(x) + 1)^(5/2))/5
 

Reduce [F]

\[ \int \cot ^2(x) (1+\cot (x))^{3/2} \, dx=\int \sqrt {\cot \left (x \right )+1}\, \cot \left (x \right )^{3}d x +\int \sqrt {\cot \left (x \right )+1}\, \cot \left (x \right )^{2}d x \] Input:

int(cot(x)^2*(1+cot(x))^(3/2),x)
 

Output:

int(sqrt(cot(x) + 1)*cot(x)**3,x) + int(sqrt(cot(x) + 1)*cot(x)**2,x)