\(\int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx\) [72]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 235 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx=-\frac {2 b^{3/2} \arctan \left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {a} \left (a^2+b^2\right ) d \sqrt {e}}+\frac {(a-b) \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right ) d \sqrt {e}}-\frac {(a-b) \arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right ) d \sqrt {e}}-\frac {(a+b) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}+\sqrt {e} \cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d \sqrt {e}} \] Output:

-2*b^(3/2)*arctan(b^(1/2)*(e*cot(d*x+c))^(1/2)/a^(1/2)/e^(1/2))/a^(1/2)/(a 
^2+b^2)/d/e^(1/2)+1/2*(a-b)*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2)) 
*2^(1/2)/(a^2+b^2)/d/e^(1/2)-1/2*(a-b)*arctan(1+2^(1/2)*(e*cot(d*x+c))^(1/ 
2)/e^(1/2))*2^(1/2)/(a^2+b^2)/d/e^(1/2)-1/2*(a+b)*arctanh(2^(1/2)*(e*cot(d 
*x+c))^(1/2)/(e^(1/2)+e^(1/2)*cot(d*x+c)))*2^(1/2)/(a^2+b^2)/d/e^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.17 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.04 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx=-\frac {\sqrt {\cot (c+d x)} \left (\frac {2 b^{3/2} \arctan \left (\frac {\sqrt {b} \sqrt {\cot (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} \left (a^2+b^2\right )}-\frac {2 b \cot ^{\frac {3}{2}}(c+d x) \operatorname {Hypergeometric2F1}\left (\frac {3}{4},1,\frac {7}{4},-\cot ^2(c+d x)\right )}{3 \left (a^2+b^2\right )}-\frac {a \left (2 \sqrt {2} \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-2 \sqrt {2} \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )+\sqrt {2} \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )-\sqrt {2} \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )\right )}{4 \left (a^2+b^2\right )}\right )}{d \sqrt {e \cot (c+d x)}} \] Input:

Integrate[1/(Sqrt[e*Cot[c + d*x]]*(a + b*Cot[c + d*x])),x]
 

Output:

-((Sqrt[Cot[c + d*x]]*((2*b^(3/2)*ArcTan[(Sqrt[b]*Sqrt[Cot[c + d*x]])/Sqrt 
[a]])/(Sqrt[a]*(a^2 + b^2)) - (2*b*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/ 
4, 1, 7/4, -Cot[c + d*x]^2])/(3*(a^2 + b^2)) - (a*(2*Sqrt[2]*ArcTan[1 - Sq 
rt[2]*Sqrt[Cot[c + d*x]]] - 2*Sqrt[2]*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x] 
]] + Sqrt[2]*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]] - Sqrt[2]* 
Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]))/(4*(a^2 + b^2))))/(d* 
Sqrt[e*Cot[c + d*x]]))
 

Rubi [A] (warning: unable to verify)

Time = 0.91 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.10, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.640, Rules used = {3042, 4057, 3042, 4017, 25, 1482, 1476, 1082, 217, 1479, 25, 27, 1103, 4117, 73, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 4057

\(\displaystyle \frac {b^2 \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))}dx}{a^2+b^2}+\frac {\int \frac {a-b \cot (c+d x)}{\sqrt {e \cot (c+d x)}}dx}{a^2+b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}+\frac {\int \frac {a+b \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2+b^2}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {2 \int -\frac {a e-b e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d \left (a^2+b^2\right )}+\frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {2 \int \frac {a e-b e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}-\frac {1}{2} (a-b) \int \frac {\cot (c+d x) e+e}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}\right )}{d \left (a^2+b^2\right )}+\frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}-\frac {1}{2} (a-b) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}\right )\right )}{d \left (a^2+b^2\right )}+\frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}-\frac {1}{2} (a-b) \left (\frac {\int \frac {1}{-e \cot (c+d x)-1}d\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}-\frac {\int \frac {1}{-e \cot (c+d x)-1}d\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \left (-\frac {\int -\frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \left (\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \left (\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {e}}\right )-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}+\frac {2 \left (-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} (a+b) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {b^2 \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))}d(-\cot (c+d x))}{d \left (a^2+b^2\right )}+\frac {2 \left (-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} (a+b) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} (a+b) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {2 b^2 \int \frac {1}{\frac {b \cot ^2(c+d x)}{e}+a}d\sqrt {e \cot (c+d x)}}{d e \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} (a+b) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {2 b^{3/2} \arctan \left (\frac {\sqrt {b} \cot (c+d x)}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {a} d \sqrt {e} \left (a^2+b^2\right )}\)

Input:

Int[1/(Sqrt[e*Cot[c + d*x]]*(a + b*Cot[c + d*x])),x]
 

Output:

(2*b^(3/2)*ArcTan[(Sqrt[b]*Cot[c + d*x])/(Sqrt[a]*Sqrt[e])])/(Sqrt[a]*(a^2 
 + b^2)*d*Sqrt[e]) + (2*(-1/2*((a - b)*(-(ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c 
 + d*x]])/Sqrt[e]]/(Sqrt[2]*Sqrt[e])) + ArcTan[1 + (Sqrt[2]*Sqrt[e*Cot[c + 
 d*x]])/Sqrt[e]]/(Sqrt[2]*Sqrt[e]))) - ((a + b)*(-1/2*Log[e + e*Cot[c + d* 
x] - Sqrt[2]*Sqrt[e]*Sqrt[e*Cot[c + d*x]]]/(Sqrt[2]*Sqrt[e]) + Log[e + e*C 
ot[c + d*x] + Sqrt[2]*Sqrt[e]*Sqrt[e*Cot[c + d*x]]]/(2*Sqrt[2]*Sqrt[e])))/ 
2))/((a^2 + b^2)*d)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4057
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)/((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[1/(c^2 + d^2)   Int[(a + b*Tan[e + f*x])^m 
*(c - d*Tan[e + f*x]), x], x] + Simp[d^2/(c^2 + d^2)   Int[(a + b*Tan[e + f 
*x])^m*((1 + Tan[e + f*x]^2)/(c + d*Tan[e + f*x])), x], x] /; FreeQ[{a, b, 
c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d 
^2, 0] &&  !IntegerQ[m]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 
Maple [A] (verified)

Time = 0.24 (sec) , antiderivative size = 332, normalized size of antiderivative = 1.41

method result size
derivativedivides \(-\frac {2 e^{2} \left (\frac {b^{2} \arctan \left (\frac {b \sqrt {e \cot \left (d x +c \right )}}{\sqrt {a e b}}\right )}{e^{2} \left (a^{2}+b^{2}\right ) \sqrt {a e b}}+\frac {\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}-\frac {b \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{e^{2} \left (a^{2}+b^{2}\right )}\right )}{d}\) \(332\)
default \(-\frac {2 e^{2} \left (\frac {b^{2} \arctan \left (\frac {b \sqrt {e \cot \left (d x +c \right )}}{\sqrt {a e b}}\right )}{e^{2} \left (a^{2}+b^{2}\right ) \sqrt {a e b}}+\frac {\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}-\frac {b \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{e^{2} \left (a^{2}+b^{2}\right )}\right )}{d}\) \(332\)

Input:

int(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

-2/d*e^2*(b^2/e^2/(a^2+b^2)/(a*e*b)^(1/2)*arctan(b*(e*cot(d*x+c))^(1/2)/(a 
*e*b)^(1/2))+1/e^2/(a^2+b^2)*(1/8*a/e*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c 
)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2 
)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^ 
(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c)) 
^(1/2)+1))-1/8*b/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot( 
d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c) 
)^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^ 
(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1533 vs. \(2 (190) = 380\).

Time = 0.16 (sec) , antiderivative size = 3135, normalized size of antiderivative = 13.34 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx=\text {Too large to display} \] Input:

integrate(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c)),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx=\int \frac {1}{\sqrt {e \cot {\left (c + d x \right )}} \left (a + b \cot {\left (c + d x \right )}\right )}\, dx \] Input:

integrate(1/(e*cot(d*x+c))**(1/2)/(a+b*cot(d*x+c)),x)
 

Output:

Integral(1/(sqrt(e*cot(c + d*x))*(a + b*cot(c + d*x))), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c)),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
                                                                                    
                                                                                    
 

Giac [F]

\[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx=\int { \frac {1}{{\left (b \cot \left (d x + c\right ) + a\right )} \sqrt {e \cot \left (d x + c\right )}} \,d x } \] Input:

integrate(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c)),x, algorithm="giac")
 

Output:

integrate(1/((b*cot(d*x + c) + a)*sqrt(e*cot(d*x + c))), x)
 

Mupad [B] (verification not implemented)

Time = 10.58 (sec) , antiderivative size = 4871, normalized size of antiderivative = 20.73 \[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx=\text {Too large to display} \] Input:

int(1/((e*cot(c + d*x))^(1/2)*(a + b*cot(c + d*x))),x)
 

Output:

atan(((((((32*(5*a*b^5*e^9 + a^3*b^3*e^9))/d^3 - ((((1/(b^2*d^2*e*1i - a^2 
*d^2*e*1i + 2*a*b*d^2*e))^(1/2)*((32*(16*b^8*d^2*e^10 + 28*a^2*b^6*d^2*e^1 
0 + 8*a^4*b^4*d^2*e^10 - 4*a^6*b^2*d^2*e^10))/d^3 - (16*(e*cot(c + d*x))^( 
1/2)*(1/(b^2*d^2*e*1i - a^2*d^2*e*1i + 2*a*b*d^2*e))^(1/2)*(16*b^9*d^4*e^1 
0 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3*d^4*e^10))/d^4) 
)/2 - (32*(e*cot(c + d*x))^(1/2)*(4*a^3*b^4*d^2*e^9 - 30*a*b^6*d^2*e^9 + 2 
*a^5*b^2*d^2*e^9))/d^4)*(1/(b^2*d^2*e*1i - a^2*d^2*e*1i + 2*a*b*d^2*e))^(1 
/2))/2)*(1/(b^2*d^2*e*1i - a^2*d^2*e*1i + 2*a*b*d^2*e))^(1/2))/2 + (96*b^5 
*e^8*(e*cot(c + d*x))^(1/2))/d^4)*(1/(b^2*d^2*e*1i - a^2*d^2*e*1i + 2*a*b* 
d^2*e))^(1/2)*1i)/2 - (((((32*(5*a*b^5*e^9 + a^3*b^3*e^9))/d^3 - ((((1/(b^ 
2*d^2*e*1i - a^2*d^2*e*1i + 2*a*b*d^2*e))^(1/2)*((32*(16*b^8*d^2*e^10 + 28 
*a^2*b^6*d^2*e^10 + 8*a^4*b^4*d^2*e^10 - 4*a^6*b^2*d^2*e^10))/d^3 + (16*(e 
*cot(c + d*x))^(1/2)*(1/(b^2*d^2*e*1i - a^2*d^2*e*1i + 2*a*b*d^2*e))^(1/2) 
*(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3 
*d^4*e^10))/d^4))/2 + (32*(e*cot(c + d*x))^(1/2)*(4*a^3*b^4*d^2*e^9 - 30*a 
*b^6*d^2*e^9 + 2*a^5*b^2*d^2*e^9))/d^4)*(1/(b^2*d^2*e*1i - a^2*d^2*e*1i + 
2*a*b*d^2*e))^(1/2))/2)*(1/(b^2*d^2*e*1i - a^2*d^2*e*1i + 2*a*b*d^2*e))^(1 
/2))/2 - (96*b^5*e^8*(e*cot(c + d*x))^(1/2))/d^4)*(1/(b^2*d^2*e*1i - a^2*d 
^2*e*1i + 2*a*b*d^2*e))^(1/2)*1i)/2)/((((((32*(5*a*b^5*e^9 + a^3*b^3*e^9)) 
/d^3 - ((((1/(b^2*d^2*e*1i - a^2*d^2*e*1i + 2*a*b*d^2*e))^(1/2)*((32*(1...
 

Reduce [F]

\[ \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx=\frac {\sqrt {e}\, \left (\int \frac {\sqrt {\cot \left (d x +c \right )}}{\cot \left (d x +c \right )^{2} b +\cot \left (d x +c \right ) a}d x \right )}{e} \] Input:

int(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c)),x)
 

Output:

(sqrt(e)*int(sqrt(cot(c + d*x))/(cot(c + d*x)**2*b + cot(c + d*x)*a),x))/e