\(\int \frac {(e \cot (c+d x))^{5/2}}{(a+b \cot (c+d x))^2} \, dx\) [76]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 316 \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+b \cot (c+d x))^2} \, dx=-\frac {a^{3/2} \left (a^2+5 b^2\right ) e^{5/2} \arctan \left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{b^{3/2} \left (a^2+b^2\right )^2 d}-\frac {\left (a^2+2 a b-b^2\right ) e^{5/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {\left (a^2+2 a b-b^2\right ) e^{5/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {\left (a^2-2 a b-b^2\right ) e^{5/2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}+\sqrt {e} \cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b \left (a^2+b^2\right ) d (a+b \cot (c+d x))} \] Output:

-a^(3/2)*(a^2+5*b^2)*e^(5/2)*arctan(b^(1/2)*(e*cot(d*x+c))^(1/2)/a^(1/2)/e 
^(1/2))/b^(3/2)/(a^2+b^2)^2/d-1/2*(a^2+2*a*b-b^2)*e^(5/2)*arctan(1-2^(1/2) 
*(e*cot(d*x+c))^(1/2)/e^(1/2))*2^(1/2)/(a^2+b^2)^2/d+1/2*(a^2+2*a*b-b^2)*e 
^(5/2)*arctan(1+2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))*2^(1/2)/(a^2+b^2)^2/ 
d-1/2*(a^2-2*a*b-b^2)*e^(5/2)*arctanh(2^(1/2)*(e*cot(d*x+c))^(1/2)/(e^(1/2 
)+e^(1/2)*cot(d*x+c)))*2^(1/2)/(a^2+b^2)^2/d+a^2*e^2*(e*cot(d*x+c))^(1/2)/ 
b/(a^2+b^2)/d/(a+b*cot(d*x+c))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 1.81 (sec) , antiderivative size = 390, normalized size of antiderivative = 1.23 \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+b \cot (c+d x))^2} \, dx=-\frac {(e \cot (c+d x))^{5/2} \left (-28 a^2 b^{3/2} \left (a^2-b^2\right ) \cot ^{\frac {3}{2}}(c+d x) \operatorname {Hypergeometric2F1}\left (\frac {3}{4},1,\frac {7}{4},-\cot ^2(c+d x)\right )+12 b^{7/2} \left (a^2+b^2\right ) \cot ^{\frac {7}{2}}(c+d x) \operatorname {Hypergeometric2F1}\left (2,\frac {7}{2},\frac {9}{2},-\frac {b \cot (c+d x)}{a}\right )-7 a^2 \left (-6 \sqrt {2} a b^{5/2} \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )+6 \sqrt {2} a b^{5/2} \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )+24 a^{7/2} \arctan \left (\frac {\sqrt {b} \sqrt {\cot (c+d x)}}{\sqrt {a}}\right )-24 a^3 \sqrt {b} \sqrt {\cot (c+d x)}-24 a b^{5/2} \sqrt {\cot (c+d x)}+4 a^2 b^{3/2} \cot ^{\frac {3}{2}}(c+d x)+4 b^{7/2} \cot ^{\frac {3}{2}}(c+d x)-3 \sqrt {2} a b^{5/2} \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )+3 \sqrt {2} a b^{5/2} \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )\right )\right )}{42 a^2 b^{3/2} \left (a^2+b^2\right )^2 d \cot ^{\frac {5}{2}}(c+d x)} \] Input:

Integrate[(e*Cot[c + d*x])^(5/2)/(a + b*Cot[c + d*x])^2,x]
 

Output:

-1/42*((e*Cot[c + d*x])^(5/2)*(-28*a^2*b^(3/2)*(a^2 - b^2)*Cot[c + d*x]^(3 
/2)*Hypergeometric2F1[3/4, 1, 7/4, -Cot[c + d*x]^2] + 12*b^(7/2)*(a^2 + b^ 
2)*Cot[c + d*x]^(7/2)*Hypergeometric2F1[2, 7/2, 9/2, -((b*Cot[c + d*x])/a) 
] - 7*a^2*(-6*Sqrt[2]*a*b^(5/2)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] + 6 
*Sqrt[2]*a*b^(5/2)*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]] + 24*a^(7/2)*Arc 
Tan[(Sqrt[b]*Sqrt[Cot[c + d*x]])/Sqrt[a]] - 24*a^3*Sqrt[b]*Sqrt[Cot[c + d* 
x]] - 24*a*b^(5/2)*Sqrt[Cot[c + d*x]] + 4*a^2*b^(3/2)*Cot[c + d*x]^(3/2) + 
 4*b^(7/2)*Cot[c + d*x]^(3/2) - 3*Sqrt[2]*a*b^(5/2)*Log[1 - Sqrt[2]*Sqrt[C 
ot[c + d*x]] + Cot[c + d*x]] + 3*Sqrt[2]*a*b^(5/2)*Log[1 + Sqrt[2]*Sqrt[Co 
t[c + d*x]] + Cot[c + d*x]])))/(a^2*b^(3/2)*(a^2 + b^2)^2*d*Cot[c + d*x]^( 
5/2))
 

Rubi [A] (warning: unable to verify)

Time = 1.50 (sec) , antiderivative size = 353, normalized size of antiderivative = 1.12, number of steps used = 22, number of rules used = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.840, Rules used = {3042, 4048, 27, 3042, 4136, 27, 3042, 4017, 25, 27, 1482, 1476, 1082, 217, 1479, 25, 27, 1103, 4117, 73, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \cot (c+d x))^{5/2}}{(a+b \cot (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (-e \tan \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}{\left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 4048

\(\displaystyle \frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}-\frac {\int -\frac {a^2 e^3+\left (a^2+2 b^2\right ) \cot ^2(c+d x) e^3-2 a b \cot (c+d x) e^3}{2 \sqrt {e \cot (c+d x)} (a+b \cot (c+d x))}dx}{b \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a^2 e^3+\left (a^2+2 b^2\right ) \cot ^2(c+d x) e^3-2 a b \cot (c+d x) e^3}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))}dx}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a^2 e^3+\left (a^2+2 b^2\right ) \tan \left (c+d x+\frac {\pi }{2}\right )^2 e^3+2 a b \tan \left (c+d x+\frac {\pi }{2}\right ) e^3}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 4136

\(\displaystyle \frac {\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))}dx}{a^2+b^2}+\frac {\int -\frac {2 \left (2 a b^2 e^3+b \left (a^2-b^2\right ) \cot (c+d x) e^3\right )}{\sqrt {e \cot (c+d x)}}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {\cot ^2(c+d x)+1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))}dx}{a^2+b^2}-\frac {2 \int \frac {2 a b^2 e^3+b \left (a^2-b^2\right ) \cot (c+d x) e^3}{\sqrt {e \cot (c+d x)}}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {2 \int \frac {2 a b^2 e^3-b \left (a^2-b^2\right ) e^3 \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {4 \int -\frac {b e^3 \left (2 a b e+\left (a^2-b^2\right ) \cot (c+d x) e\right )}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}+\frac {4 \int \frac {b e^3 \left (2 a b e+\left (a^2-b^2\right ) \cot (c+d x) e\right )}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}+\frac {4 b e^3 \int \frac {2 a b e+\left (a^2-b^2\right ) \cot (c+d x) e}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}+\frac {4 b e^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \int \frac {\cot (c+d x) e+e}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}+\frac {4 b e^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}+\frac {4 b e^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\int \frac {1}{-e \cot (c+d x)-1}d\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}-\frac {\int \frac {1}{-e \cot (c+d x)-1}d\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {4 b e^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}\right )}{d \left (a^2+b^2\right )}+\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\frac {4 b e^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (-\frac {\int -\frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {4 b e^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {4 b e^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}+\frac {4 b e^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {\frac {a^2 e^3 \left (a^2+5 b^2\right ) \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))}d(-\cot (c+d x))}{d \left (a^2+b^2\right )}+\frac {4 b e^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\frac {4 b e^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {2 a^2 e^2 \left (a^2+5 b^2\right ) \int \frac {1}{\frac {b \cot ^2(c+d x)}{e}+a}d\sqrt {e \cot (c+d x)}}{d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}+\frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {a^2 e^2 \sqrt {e \cot (c+d x)}}{b d \left (a^2+b^2\right ) (a+b \cot (c+d x))}+\frac {\frac {4 b e^3 \left (\frac {1}{2} \left (a^2+2 a b-b^2\right ) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \left (a^2-2 a b-b^2\right ) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d \left (a^2+b^2\right )}+\frac {2 a^{3/2} e^{5/2} \left (a^2+5 b^2\right ) \arctan \left (\frac {\sqrt {b} \cot (c+d x)}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {b} d \left (a^2+b^2\right )}}{2 b \left (a^2+b^2\right )}\)

Input:

Int[(e*Cot[c + d*x])^(5/2)/(a + b*Cot[c + d*x])^2,x]
 

Output:

(a^2*e^2*Sqrt[e*Cot[c + d*x]])/(b*(a^2 + b^2)*d*(a + b*Cot[c + d*x])) + (( 
2*a^(3/2)*(a^2 + 5*b^2)*e^(5/2)*ArcTan[(Sqrt[b]*Cot[c + d*x])/(Sqrt[a]*Sqr 
t[e])])/(Sqrt[b]*(a^2 + b^2)*d) + (4*b*e^3*(((a^2 + 2*a*b - b^2)*(-(ArcTan 
[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]]/(Sqrt[2]*Sqrt[e])) + ArcTan[1 
 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]]/(Sqrt[2]*Sqrt[e])))/2 - ((a^2 - 
 2*a*b - b^2)*(-1/2*Log[e + e*Cot[c + d*x] - Sqrt[2]*Sqrt[e]*Sqrt[e*Cot[c 
+ d*x]]]/(Sqrt[2]*Sqrt[e]) + Log[e + e*Cot[c + d*x] + Sqrt[2]*Sqrt[e]*Sqrt 
[e*Cot[c + d*x]]]/(2*Sqrt[2]*Sqrt[e])))/2))/((a^2 + b^2)*d))/(2*b*(a^2 + b 
^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4048
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)^2*(a + b*Tan[e + f*x])^(m 
 - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1 
/(d*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + 
f*x])^(n + 1)*Simp[a^2*d*(b*d*(m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c 
*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3*a*b^2*d) 
*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*( 
n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 2] && LtQ 
[n, -1] && IntegerQ[2*m]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4136
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^ 
n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[ 
(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*((1 + Tan[ 
e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, 
 C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] & 
&  !GtQ[n, 0] &&  !LeQ[n, -1]
 
Maple [A] (verified)

Time = 0.51 (sec) , antiderivative size = 387, normalized size of antiderivative = 1.22

method result size
derivativedivides \(-\frac {2 e^{3} \left (\frac {a^{2} \left (-\frac {\left (a^{2}+b^{2}\right ) \sqrt {e \cot \left (d x +c \right )}}{2 b \left (e \cot \left (d x +c \right ) b +a e \right )}+\frac {\left (a^{2}+5 b^{2}\right ) \arctan \left (\frac {b \sqrt {e \cot \left (d x +c \right )}}{\sqrt {a e b}}\right )}{2 b \sqrt {a e b}}\right )}{\left (a^{2}+b^{2}\right )^{2}}+\frac {-\frac {a b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 e}+\frac {\left (-a^{2}+b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{\left (a^{2}+b^{2}\right )^{2}}\right )}{d}\) \(387\)
default \(-\frac {2 e^{3} \left (\frac {a^{2} \left (-\frac {\left (a^{2}+b^{2}\right ) \sqrt {e \cot \left (d x +c \right )}}{2 b \left (e \cot \left (d x +c \right ) b +a e \right )}+\frac {\left (a^{2}+5 b^{2}\right ) \arctan \left (\frac {b \sqrt {e \cot \left (d x +c \right )}}{\sqrt {a e b}}\right )}{2 b \sqrt {a e b}}\right )}{\left (a^{2}+b^{2}\right )^{2}}+\frac {-\frac {a b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 e}+\frac {\left (-a^{2}+b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{\left (a^{2}+b^{2}\right )^{2}}\right )}{d}\) \(387\)

Input:

int((e*cot(d*x+c))^(5/2)/(a+b*cot(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

-2/d*e^3*(a^2/(a^2+b^2)^2*(-1/2*(a^2+b^2)/b*(e*cot(d*x+c))^(1/2)/(e*cot(d* 
x+c)*b+a*e)+1/2*(a^2+5*b^2)/b/(a*e*b)^(1/2)*arctan(b*(e*cot(d*x+c))^(1/2)/ 
(a*e*b)^(1/2)))+1/(a^2+b^2)^2*(-1/4*a/e*b*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d 
*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)- 
(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e 
^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x 
+c))^(1/2)+1))+1/8*(-a^2+b^2)/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^ 
(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)* 
(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e 
*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1 
))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3098 vs. \(2 (269) = 538\).

Time = 0.36 (sec) , antiderivative size = 6258, normalized size of antiderivative = 19.80 \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+b \cot (c+d x))^2} \, dx=\text {Too large to display} \] Input:

integrate((e*cot(d*x+c))^(5/2)/(a+b*cot(d*x+c))^2,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+b \cot (c+d x))^2} \, dx=\int \frac {\left (e \cot {\left (c + d x \right )}\right )^{\frac {5}{2}}}{\left (a + b \cot {\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate((e*cot(d*x+c))**(5/2)/(a+b*cot(d*x+c))**2,x)
 

Output:

Integral((e*cot(c + d*x))**(5/2)/(a + b*cot(c + d*x))**2, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+b \cot (c+d x))^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((e*cot(d*x+c))^(5/2)/(a+b*cot(d*x+c))^2,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F]

\[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+b \cot (c+d x))^2} \, dx=\int { \frac {\left (e \cot \left (d x + c\right )\right )^{\frac {5}{2}}}{{\left (b \cot \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate((e*cot(d*x+c))^(5/2)/(a+b*cot(d*x+c))^2,x, algorithm="giac")
 

Output:

integrate((e*cot(d*x + c))^(5/2)/(b*cot(d*x + c) + a)^2, x)
 

Mupad [B] (verification not implemented)

Time = 11.65 (sec) , antiderivative size = 12617, normalized size of antiderivative = 39.93 \[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+b \cot (c+d x))^2} \, dx=\text {Too large to display} \] Input:

int((e*cot(c + d*x))^(5/2)/(a + b*cot(c + d*x))^2,x)
 

Output:

atan(((((((8*(96*a^2*b^14*d^4*e^13 + 480*a^4*b^12*d^4*e^13 + 960*a^6*b^10* 
d^4*e^13 + 960*a^8*b^8*d^4*e^13 + 480*a^10*b^6*d^4*e^13 + 96*a^12*b^4*d^4* 
e^13))/(b^9*d^5 + a^8*b*d^5 + 4*a^2*b^7*d^5 + 6*a^4*b^5*d^5 + 4*a^6*b^3*d^ 
5) - (16*(e*cot(c + d*x))^(1/2)*((e^5*1i)/(4*(a^4*d^2 + b^4*d^2 + a*b^3*d^ 
2*4i - a^3*b*d^2*4i - 6*a^2*b^2*d^2)))^(1/2)*(32*b^18*d^4*e^10 + 160*a^2*b 
^16*d^4*e^10 + 288*a^4*b^14*d^4*e^10 + 160*a^6*b^12*d^4*e^10 - 160*a^8*b^1 
0*d^4*e^10 - 288*a^10*b^8*d^4*e^10 - 160*a^12*b^6*d^4*e^10 - 32*a^14*b^4*d 
^4*e^10))/(b^9*d^4 + a^8*b*d^4 + 4*a^2*b^7*d^4 + 6*a^4*b^5*d^4 + 4*a^6*b^3 
*d^4))*((e^5*1i)/(4*(a^4*d^2 + b^4*d^2 + a*b^3*d^2*4i - a^3*b*d^2*4i - 6*a 
^2*b^2*d^2)))^(1/2) + (16*(e*cot(c + d*x))^(1/2)*(60*a*b^13*d^2*e^15 + 8*a 
^13*b*d^2*e^15 + 52*a^3*b^11*d^2*e^15 + 128*a^5*b^9*d^2*e^15 + 424*a^7*b^7 
*d^2*e^15 + 380*a^9*b^5*d^2*e^15 + 100*a^11*b^3*d^2*e^15))/(b^9*d^4 + a^8* 
b*d^4 + 4*a^2*b^7*d^4 + 6*a^4*b^5*d^4 + 4*a^6*b^3*d^4))*((e^5*1i)/(4*(a^4* 
d^2 + b^4*d^2 + a*b^3*d^2*4i - a^3*b*d^2*4i - 6*a^2*b^2*d^2)))^(1/2) + (8* 
(4*a*b^11*d^2*e^18 + 16*a^11*b*d^2*e^18 - 304*a^3*b^9*d^2*e^18 - 120*a^5*b 
^7*d^2*e^18 + 320*a^7*b^5*d^2*e^18 + 148*a^9*b^3*d^2*e^18))/(b^9*d^5 + a^8 
*b*d^5 + 4*a^2*b^7*d^5 + 6*a^4*b^5*d^5 + 4*a^6*b^3*d^5))*((e^5*1i)/(4*(a^4 
*d^2 + b^4*d^2 + a*b^3*d^2*4i - a^3*b*d^2*4i - 6*a^2*b^2*d^2)))^(1/2) + (1 
6*(e*cot(c + d*x))^(1/2)*(a^10*e^20 - 2*b^10*e^20 - 4*a^2*b^8*e^20 - 27*a^ 
4*b^6*e^20 + 15*a^6*b^4*e^20 + 9*a^8*b^2*e^20))/(b^9*d^4 + a^8*b*d^4 + ...
 

Reduce [F]

\[ \int \frac {(e \cot (c+d x))^{5/2}}{(a+b \cot (c+d x))^2} \, dx=\sqrt {e}\, \left (\int \frac {\sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right )^{2}}{\cot \left (d x +c \right )^{2} b^{2}+2 \cot \left (d x +c \right ) a b +a^{2}}d x \right ) e^{2} \] Input:

int((e*cot(d*x+c))^(5/2)/(a+b*cot(d*x+c))^2,x)
 

Output:

sqrt(e)*int((sqrt(cot(c + d*x))*cot(c + d*x)**2)/(cot(c + d*x)**2*b**2 + 2 
*cot(c + d*x)*a*b + a**2),x)*e**2