\(\int \frac {\cot ^3(d+e x)}{(a+b \cot ^2(d+e x)+c \cot ^4(d+e x))^{3/2}} \, dx\) [28]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 153 \[ \int \frac {\cot ^3(d+e x)}{\left (a+b \cot ^2(d+e x)+c \cot ^4(d+e x)\right )^{3/2}} \, dx=-\frac {\text {arctanh}\left (\frac {2 a-b+(b-2 c) \cot ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 (a-b+c)^{3/2} e}+\frac {a (b-2 c)+(2 a-b) c \cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \] Output:

-1/2*arctanh(1/2*(2*a-b+(b-2*c)*cot(e*x+d)^2)/(a-b+c)^(1/2)/(a+b*cot(e*x+d 
)^2+c*cot(e*x+d)^4)^(1/2))/(a-b+c)^(3/2)/e+(a*(b-2*c)+(2*a-b)*c*cot(e*x+d) 
^2)/(a-b+c)/(-4*a*c+b^2)/e/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)
 

Mathematica [A] (verified)

Time = 1.14 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.27 \[ \int \frac {\cot ^3(d+e x)}{\left (a+b \cot ^2(d+e x)+c \cot ^4(d+e x)\right )^{3/2}} \, dx=-\frac {2 \sqrt {a-b+c} \left (-a (b-2 c)+(-2 a+b) c \cot ^2(d+e x)\right )+\left (b^2-4 a c\right ) \text {arctanh}\left (\frac {b-2 c+(2 a-b) \tan ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {c+b \tan ^2(d+e x)+a \tan ^4(d+e x)}}\right ) \cot ^2(d+e x) \sqrt {c+b \tan ^2(d+e x)+a \tan ^4(d+e x)}}{2 (a-b+c)^{3/2} \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}} \] Input:

Integrate[Cot[d + e*x]^3/(a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4)^(3/2),x 
]
 

Output:

-1/2*(2*Sqrt[a - b + c]*(-(a*(b - 2*c)) + (-2*a + b)*c*Cot[d + e*x]^2) + ( 
b^2 - 4*a*c)*ArcTanh[(b - 2*c + (2*a - b)*Tan[d + e*x]^2)/(2*Sqrt[a - b + 
c]*Sqrt[c + b*Tan[d + e*x]^2 + a*Tan[d + e*x]^4])]*Cot[d + e*x]^2*Sqrt[c + 
 b*Tan[d + e*x]^2 + a*Tan[d + e*x]^4])/((a - b + c)^(3/2)*(b^2 - 4*a*c)*e* 
Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4])
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.99, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 4184, 1578, 1235, 27, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^3(d+e x)}{\left (a+b \cot ^2(d+e x)+c \cot ^4(d+e x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot (d+e x)^3}{\left (a+b \cot (d+e x)^2+c \cot (d+e x)^4\right )^{3/2}}dx\)

\(\Big \downarrow \) 4184

\(\displaystyle -\frac {\int \frac {\cot ^3(d+e x)}{\left (\cot ^2(d+e x)+1\right ) \left (c \cot ^4(d+e x)+b \cot ^2(d+e x)+a\right )^{3/2}}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 1578

\(\displaystyle -\frac {\int \frac {\cot ^2(d+e x)}{\left (\cot ^2(d+e x)+1\right ) \left (c \cot ^4(d+e x)+b \cot ^2(d+e x)+a\right )^{3/2}}d\cot ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 1235

\(\displaystyle -\frac {-\frac {2 \int \frac {b^2-4 a c}{2 \left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right )}-\frac {2 \left (c (2 a-b) \cot ^2(d+e x)+a (b-2 c)\right )}{(a-b+c) \left (b^2-4 a c\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}}{2 e}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {-\frac {\int \frac {1}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}d\cot ^2(d+e x)}{a-b+c}-\frac {2 \left (c (2 a-b) \cot ^2(d+e x)+a (b-2 c)\right )}{(a-b+c) \left (b^2-4 a c\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}}{2 e}\)

\(\Big \downarrow \) 1154

\(\displaystyle -\frac {\frac {2 \int \frac {1}{4 (a-b+c)-\cot ^4(d+e x)}d\frac {(b-2 c) \cot ^2(d+e x)+2 a-b}{\sqrt {c \cot ^4(d+e x)+b \cot ^2(d+e x)+a}}}{a-b+c}-\frac {2 \left (c (2 a-b) \cot ^2(d+e x)+a (b-2 c)\right )}{(a-b+c) \left (b^2-4 a c\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}}{2 e}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {\text {arctanh}\left (\frac {2 a+(b-2 c) \cot ^2(d+e x)-b}{2 \sqrt {a-b+c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{(a-b+c)^{3/2}}-\frac {2 \left (c (2 a-b) \cot ^2(d+e x)+a (b-2 c)\right )}{(a-b+c) \left (b^2-4 a c\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}}{2 e}\)

Input:

Int[Cot[d + e*x]^3/(a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4)^(3/2),x]
 

Output:

-1/2*(ArcTanh[(2*a - b + (b - 2*c)*Cot[d + e*x]^2)/(2*Sqrt[a - b + c]*Sqrt 
[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4])]/(a - b + c)^(3/2) - (2*(a*(b - 
 2*c) + (2*a - b)*c*Cot[d + e*x]^2))/((a - b + c)*(b^2 - 4*a*c)*Sqrt[a + b 
*Cot[d + e*x]^2 + c*Cot[d + e*x]^4]))/e
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1235
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2 
*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x)*((a 
+ b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] 
 + Simp[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^m 
*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2*(p + m + 
 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d* 
m + b*e*m) - b*d*(3*c*d - b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - 
f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m}, x] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p] 
)
 

rule 1578
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_ 
)^4)^(p_.), x_Symbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a 
+ b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && Int 
egerQ[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4184
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*( 
f_.))^(n_.) + (c_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] 
 :> Simp[-f/e   Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)), 
x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[ 
n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(456\) vs. \(2(141)=282\).

Time = 0.22 (sec) , antiderivative size = 457, normalized size of antiderivative = 2.99

method result size
derivativedivides \(\frac {-\frac {b +2 c \cot \left (e x +d \right )^{2}}{\sqrt {a +b \cot \left (e x +d \right )^{2}+c \cot \left (e x +d \right )^{4}}\, \left (4 a c -b^{2}\right )}+\frac {2 c \ln \left (\frac {2 a -2 b +2 c +\left (b -2 c \right ) \left (\cot \left (e x +d \right )^{2}+1\right )+2 \sqrt {a -b +c}\, \sqrt {c \left (\cot \left (e x +d \right )^{2}+1\right )^{2}+\left (b -2 c \right ) \left (\cot \left (e x +d \right )^{2}+1\right )+a -b +c}}{\cot \left (e x +d \right )^{2}+1}\right )}{\left (\sqrt {-4 a c +b^{2}}-b +2 c \right ) \left (\sqrt {-4 a c +b^{2}}+b -2 c \right ) \sqrt {a -b +c}}-\frac {2 c \sqrt {\left (\cot \left (e x +d \right )^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2} c +\sqrt {-4 a c +b^{2}}\, \left (\cot \left (e x +d \right )^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{\left (\sqrt {-4 a c +b^{2}}-b +2 c \right ) \left (-4 a c +b^{2}\right ) \left (\cot \left (e x +d \right )^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}+\frac {2 c \sqrt {\left (\cot \left (e x +d \right )^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2} c -\sqrt {-4 a c +b^{2}}\, \left (\cot \left (e x +d \right )^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{\left (\sqrt {-4 a c +b^{2}}+b -2 c \right ) \left (-4 a c +b^{2}\right ) \left (\cot \left (e x +d \right )^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{e}\) \(457\)
default \(\frac {-\frac {b +2 c \cot \left (e x +d \right )^{2}}{\sqrt {a +b \cot \left (e x +d \right )^{2}+c \cot \left (e x +d \right )^{4}}\, \left (4 a c -b^{2}\right )}+\frac {2 c \ln \left (\frac {2 a -2 b +2 c +\left (b -2 c \right ) \left (\cot \left (e x +d \right )^{2}+1\right )+2 \sqrt {a -b +c}\, \sqrt {c \left (\cot \left (e x +d \right )^{2}+1\right )^{2}+\left (b -2 c \right ) \left (\cot \left (e x +d \right )^{2}+1\right )+a -b +c}}{\cot \left (e x +d \right )^{2}+1}\right )}{\left (\sqrt {-4 a c +b^{2}}-b +2 c \right ) \left (\sqrt {-4 a c +b^{2}}+b -2 c \right ) \sqrt {a -b +c}}-\frac {2 c \sqrt {\left (\cot \left (e x +d \right )^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2} c +\sqrt {-4 a c +b^{2}}\, \left (\cot \left (e x +d \right )^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{\left (\sqrt {-4 a c +b^{2}}-b +2 c \right ) \left (-4 a c +b^{2}\right ) \left (\cot \left (e x +d \right )^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}+\frac {2 c \sqrt {\left (\cot \left (e x +d \right )^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2} c -\sqrt {-4 a c +b^{2}}\, \left (\cot \left (e x +d \right )^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{\left (\sqrt {-4 a c +b^{2}}+b -2 c \right ) \left (-4 a c +b^{2}\right ) \left (\cot \left (e x +d \right )^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{e}\) \(457\)

Input:

int(cot(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x,method=_RETURNV 
ERBOSE)
 

Output:

1/e*(-1/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)*(b+2*c*cot(e*x+d)^2)/(4*a* 
c-b^2)+2*c/((-4*a*c+b^2)^(1/2)-b+2*c)/((-4*a*c+b^2)^(1/2)+b-2*c)/(a-b+c)^( 
1/2)*ln((2*a-2*b+2*c+(b-2*c)*(cot(e*x+d)^2+1)+2*(a-b+c)^(1/2)*(c*(cot(e*x+ 
d)^2+1)^2+(b-2*c)*(cot(e*x+d)^2+1)+a-b+c)^(1/2))/(cot(e*x+d)^2+1))-2*c/((- 
4*a*c+b^2)^(1/2)-b+2*c)/(-4*a*c+b^2)/(cot(e*x+d)^2-1/2*(-b+(-4*a*c+b^2)^(1 
/2))/c)*((cot(e*x+d)^2-1/2*(-b+(-4*a*c+b^2)^(1/2))/c)^2*c+(-4*a*c+b^2)^(1/ 
2)*(cot(e*x+d)^2-1/2*(-b+(-4*a*c+b^2)^(1/2))/c))^(1/2)+2*c/((-4*a*c+b^2)^( 
1/2)+b-2*c)/(-4*a*c+b^2)/(cot(e*x+d)^2+1/2*(b+(-4*a*c+b^2)^(1/2))/c)*((cot 
(e*x+d)^2+1/2*(b+(-4*a*c+b^2)^(1/2))/c)^2*c-(-4*a*c+b^2)^(1/2)*(cot(e*x+d) 
^2+1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 860 vs. \(2 (141) = 282\).

Time = 0.42 (sec) , antiderivative size = 1717, normalized size of antiderivative = 11.22 \[ \int \frac {\cot ^3(d+e x)}{\left (a+b \cot ^2(d+e x)+c \cot ^4(d+e x)\right )^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate(cot(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x, algorith 
m="fricas")
 

Output:

[1/4*((a*b^2 + b^3 - 4*a*c^2 + (a*b^2 - b^3 - 4*a*c^2 - (4*a^2 - 4*a*b - b 
^2)*c)*cos(2*e*x + 2*d)^2 - (4*a^2 + 4*a*b - b^2)*c - 2*(a*b^2 + 4*a*c^2 - 
 (4*a^2 + b^2)*c)*cos(2*e*x + 2*d))*sqrt(a - b + c)*log(2*(a^2 - 2*a*b + b 
^2 + 2*(a - b)*c + c^2)*cos(2*e*x + 2*d)^2 + 2*a^2 - b^2 + 2*c^2 - 2*((a - 
 b + c)*cos(2*e*x + 2*d)^2 - (2*a - b)*cos(2*e*x + 2*d) + a - c)*sqrt(a - 
b + c)*sqrt(((a - b + c)*cos(2*e*x + 2*d)^2 - 2*(a - c)*cos(2*e*x + 2*d) + 
 a + b + c)/(cos(2*e*x + 2*d)^2 - 2*cos(2*e*x + 2*d) + 1)) - 4*(a^2 - a*b 
+ b*c - c^2)*cos(2*e*x + 2*d)) + 4*(a^2*b - a*b^2 + b^2*c - b*c^2 + (a^2*b 
 - a*b^2 - (4*a - b)*c^2 - (4*a^2 - 6*a*b + b^2)*c)*cos(2*e*x + 2*d)^2 - 2 
*(a^2*b - a*b^2 - 2*a*c^2 - (2*a^2 - 3*a*b)*c)*cos(2*e*x + 2*d))*sqrt(((a 
- b + c)*cos(2*e*x + 2*d)^2 - 2*(a - c)*cos(2*e*x + 2*d) + a + b + c)/(cos 
(2*e*x + 2*d)^2 - 2*cos(2*e*x + 2*d) + 1)))/((a^3*b^2 - 3*a^2*b^3 + 3*a*b^ 
4 - b^5 - 4*a*c^4 - (12*a^2 - 12*a*b - b^2)*c^3 - 3*(4*a^3 - 8*a^2*b + 3*a 
*b^2 + b^3)*c^2 - (4*a^4 - 12*a^3*b + 9*a^2*b^2 + 2*a*b^3 - 3*b^4)*c)*e*co 
s(2*e*x + 2*d)^2 - 2*(a^3*b^2 - 2*a^2*b^3 + a*b^4 + 4*a*c^4 + (4*a^2 - 8*a 
*b - b^2)*c^3 - (4*a^3 - 3*a*b^2 - 2*b^3)*c^2 - (4*a^4 - 8*a^3*b + 3*a^2*b 
^2 + b^4)*c)*e*cos(2*e*x + 2*d) + (a^3*b^2 - a^2*b^3 - a*b^4 + b^5 - 4*a*c 
^4 - (12*a^2 - 4*a*b - b^2)*c^3 - (12*a^3 - 8*a^2*b - 7*a*b^2 + b^3)*c^2 - 
 (4*a^4 - 4*a^3*b - 7*a^2*b^2 + 6*a*b^3 + b^4)*c)*e), 1/2*((a*b^2 + b^3 - 
4*a*c^2 + (a*b^2 - b^3 - 4*a*c^2 - (4*a^2 - 4*a*b - b^2)*c)*cos(2*e*x +...
 

Sympy [F]

\[ \int \frac {\cot ^3(d+e x)}{\left (a+b \cot ^2(d+e x)+c \cot ^4(d+e x)\right )^{3/2}} \, dx=\int \frac {\cot ^{3}{\left (d + e x \right )}}{\left (a + b \cot ^{2}{\left (d + e x \right )} + c \cot ^{4}{\left (d + e x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(cot(e*x+d)**3/(a+b*cot(e*x+d)**2+c*cot(e*x+d)**4)**(3/2),x)
 

Output:

Integral(cot(d + e*x)**3/(a + b*cot(d + e*x)**2 + c*cot(d + e*x)**4)**(3/2 
), x)
 

Maxima [F]

\[ \int \frac {\cot ^3(d+e x)}{\left (a+b \cot ^2(d+e x)+c \cot ^4(d+e x)\right )^{3/2}} \, dx=\int { \frac {\cot \left (e x + d\right )^{3}}{{\left (c \cot \left (e x + d\right )^{4} + b \cot \left (e x + d\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cot(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x, algorith 
m="maxima")
 

Output:

integrate(cot(e*x + d)^3/(c*cot(e*x + d)^4 + b*cot(e*x + d)^2 + a)^(3/2), 
x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\cot ^3(d+e x)}{\left (a+b \cot ^2(d+e x)+c \cot ^4(d+e x)\right )^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(cot(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x, algorith 
m="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^3(d+e x)}{\left (a+b \cot ^2(d+e x)+c \cot ^4(d+e x)\right )^{3/2}} \, dx=\int \frac {{\mathrm {cot}\left (d+e\,x\right )}^3}{{\left (c\,{\mathrm {cot}\left (d+e\,x\right )}^4+b\,{\mathrm {cot}\left (d+e\,x\right )}^2+a\right )}^{3/2}} \,d x \] Input:

int(cot(d + e*x)^3/(a + b*cot(d + e*x)^2 + c*cot(d + e*x)^4)^(3/2),x)
                                                                                    
                                                                                    
 

Output:

int(cot(d + e*x)^3/(a + b*cot(d + e*x)^2 + c*cot(d + e*x)^4)^(3/2), x)
 

Reduce [F]

\[ \int \frac {\cot ^3(d+e x)}{\left (a+b \cot ^2(d+e x)+c \cot ^4(d+e x)\right )^{3/2}} \, dx=\int \frac {\sqrt {\cot \left (e x +d \right )^{4} c +\cot \left (e x +d \right )^{2} b +a}\, \cot \left (e x +d \right )^{3}}{\cot \left (e x +d \right )^{8} c^{2}+2 \cot \left (e x +d \right )^{6} b c +2 \cot \left (e x +d \right )^{4} a c +\cot \left (e x +d \right )^{4} b^{2}+2 \cot \left (e x +d \right )^{2} a b +a^{2}}d x \] Input:

int(cot(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x)
 

Output:

int((sqrt(cot(d + e*x)**4*c + cot(d + e*x)**2*b + a)*cot(d + e*x)**3)/(cot 
(d + e*x)**8*c**2 + 2*cot(d + e*x)**6*b*c + 2*cot(d + e*x)**4*a*c + cot(d 
+ e*x)**4*b**2 + 2*cot(d + e*x)**2*a*b + a**2),x)