\(\int \frac {\sec ^m(c+d x)}{\sqrt [3]{b \sec (c+d x)}} \, dx\) [207]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 82 \[ \int \frac {\sec ^m(c+d x)}{\sqrt [3]{b \sec (c+d x)}} \, dx=-\frac {3 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{6} (4-3 m),\frac {1}{6} (10-3 m),\cos ^2(c+d x)\right ) \sec ^{-1+m}(c+d x) \sin (c+d x)}{d (4-3 m) \sqrt [3]{b \sec (c+d x)} \sqrt {\sin ^2(c+d x)}} \] Output:

-3*hypergeom([1/2, 2/3-1/2*m],[5/3-1/2*m],cos(d*x+c)^2)*sec(d*x+c)^(-1+m)* 
sin(d*x+c)/d/(4-3*m)/(b*sec(d*x+c))^(1/3)/(sin(d*x+c)^2)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.01 \[ \int \frac {\sec ^m(c+d x)}{\sqrt [3]{b \sec (c+d x)}} \, dx=\frac {\csc (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{2} \left (-\frac {1}{3}+m\right ),\frac {1}{2} \left (\frac {5}{3}+m\right ),\sec ^2(c+d x)\right ) \sec ^{-1+m}(c+d x) \sqrt {-\tan ^2(c+d x)}}{d \left (-\frac {1}{3}+m\right ) \sqrt [3]{b \sec (c+d x)}} \] Input:

Integrate[Sec[c + d*x]^m/(b*Sec[c + d*x])^(1/3),x]
 

Output:

(Csc[c + d*x]*Hypergeometric2F1[1/2, (-1/3 + m)/2, (5/3 + m)/2, Sec[c + d* 
x]^2]*Sec[c + d*x]^(-1 + m)*Sqrt[-Tan[c + d*x]^2])/(d*(-1/3 + m)*(b*Sec[c 
+ d*x])^(1/3))
 

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {2034, 3042, 4259, 3042, 3122}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^m(c+d x)}{\sqrt [3]{b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 2034

\(\displaystyle \frac {\sqrt [3]{\sec (c+d x)} \int \sec ^{m-\frac {1}{3}}(c+d x)dx}{\sqrt [3]{b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt [3]{\sec (c+d x)} \int \csc \left (c+d x+\frac {\pi }{2}\right )^{m-\frac {1}{3}}dx}{\sqrt [3]{b \sec (c+d x)}}\)

\(\Big \downarrow \) 4259

\(\displaystyle \frac {\cos ^{m+\frac {2}{3}}(c+d x) \sec ^{m+1}(c+d x) \int \cos ^{\frac {1}{3}-m}(c+d x)dx}{\sqrt [3]{b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\cos ^{m+\frac {2}{3}}(c+d x) \sec ^{m+1}(c+d x) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{\frac {1}{3}-m}dx}{\sqrt [3]{b \sec (c+d x)}}\)

\(\Big \downarrow \) 3122

\(\displaystyle -\frac {3 \sin (c+d x) \sec ^{m-1}(c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{6} (4-3 m),\frac {1}{6} (10-3 m),\cos ^2(c+d x)\right )}{d (4-3 m) \sqrt {\sin ^2(c+d x)} \sqrt [3]{b \sec (c+d x)}}\)

Input:

Int[Sec[c + d*x]^m/(b*Sec[c + d*x])^(1/3),x]
 

Output:

(-3*Hypergeometric2F1[1/2, (4 - 3*m)/6, (10 - 3*m)/6, Cos[c + d*x]^2]*Sec[ 
c + d*x]^(-1 + m)*Sin[c + d*x])/(d*(4 - 3*m)*(b*Sec[c + d*x])^(1/3)*Sqrt[S 
in[c + d*x]^2])
 

Defintions of rubi rules used

rule 2034
Int[(Fx_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Simp[b^IntPart 
[n]*((b*v)^FracPart[n]/(a^IntPart[n]*(a*v)^FracPart[n]))   Int[(a*v)^(m + n 
)*Fx, x], x] /; FreeQ[{a, b, m, n}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] && 
  !IntegerQ[m + n]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3122
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2 
F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n}, x] 
 &&  !IntegerQ[2*n]
 

rule 4259
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^(n - 1)*((Sin[c + d*x]/b)^(n - 1)   Int[1/(Sin[c + d*x]/b)^n, x]), x] /; 
FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]
 
Maple [F]

\[\int \frac {\sec \left (d x +c \right )^{m}}{\left (b \sec \left (d x +c \right )\right )^{\frac {1}{3}}}d x\]

Input:

int(sec(d*x+c)^m/(b*sec(d*x+c))^(1/3),x)
 

Output:

int(sec(d*x+c)^m/(b*sec(d*x+c))^(1/3),x)
 

Fricas [F]

\[ \int \frac {\sec ^m(c+d x)}{\sqrt [3]{b \sec (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{m}}{\left (b \sec \left (d x + c\right )\right )^{\frac {1}{3}}} \,d x } \] Input:

integrate(sec(d*x+c)^m/(b*sec(d*x+c))^(1/3),x, algorithm="fricas")
 

Output:

integral((b*sec(d*x + c))^(2/3)*sec(d*x + c)^m/(b*sec(d*x + c)), x)
 

Sympy [F]

\[ \int \frac {\sec ^m(c+d x)}{\sqrt [3]{b \sec (c+d x)}} \, dx=\int \frac {\sec ^{m}{\left (c + d x \right )}}{\sqrt [3]{b \sec {\left (c + d x \right )}}}\, dx \] Input:

integrate(sec(d*x+c)**m/(b*sec(d*x+c))**(1/3),x)
 

Output:

Integral(sec(c + d*x)**m/(b*sec(c + d*x))**(1/3), x)
 

Maxima [F]

\[ \int \frac {\sec ^m(c+d x)}{\sqrt [3]{b \sec (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{m}}{\left (b \sec \left (d x + c\right )\right )^{\frac {1}{3}}} \,d x } \] Input:

integrate(sec(d*x+c)^m/(b*sec(d*x+c))^(1/3),x, algorithm="maxima")
 

Output:

integrate(sec(d*x + c)^m/(b*sec(d*x + c))^(1/3), x)
 

Giac [F]

\[ \int \frac {\sec ^m(c+d x)}{\sqrt [3]{b \sec (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{m}}{\left (b \sec \left (d x + c\right )\right )^{\frac {1}{3}}} \,d x } \] Input:

integrate(sec(d*x+c)^m/(b*sec(d*x+c))^(1/3),x, algorithm="giac")
 

Output:

integrate(sec(d*x + c)^m/(b*sec(d*x + c))^(1/3), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^m(c+d x)}{\sqrt [3]{b \sec (c+d x)}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^m}{{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{1/3}} \,d x \] Input:

int((1/cos(c + d*x))^m/(b/cos(c + d*x))^(1/3),x)
 

Output:

int((1/cos(c + d*x))^m/(b/cos(c + d*x))^(1/3), x)
 

Reduce [F]

\[ \int \frac {\sec ^m(c+d x)}{\sqrt [3]{b \sec (c+d x)}} \, dx=\frac {\int \frac {\sec \left (d x +c \right )^{m}}{\sec \left (d x +c \right )^{\frac {1}{3}}}d x}{b^{\frac {1}{3}}} \] Input:

int(sec(d*x+c)^m/(b*sec(d*x+c))^(1/3),x)
 

Output:

int(sec(c + d*x)**m/sec(c + d*x)**(1/3),x)/b**(1/3)