\(\int (d \csc (a+b x))^{9/2} \sqrt {c \sec (a+b x)} \, dx\) [230]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 128 \[ \int (d \csc (a+b x))^{9/2} \sqrt {c \sec (a+b x)} \, dx=-\frac {4 c d^3 (d \csc (a+b x))^{3/2}}{7 b \sqrt {c \sec (a+b x)}}-\frac {2 c d (d \csc (a+b x))^{7/2}}{7 b \sqrt {c \sec (a+b x)}}+\frac {4 d^4 \sqrt {d \csc (a+b x)} \operatorname {EllipticF}\left (a-\frac {\pi }{4}+b x,2\right ) \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}}{7 b} \] Output:

-4/7*c*d^3*(d*csc(b*x+a))^(3/2)/b/(c*sec(b*x+a))^(1/2)-2/7*c*d*(d*csc(b*x+ 
a))^(7/2)/b/(c*sec(b*x+a))^(1/2)+4/7*d^4*(d*csc(b*x+a))^(1/2)*InverseJacob 
iAM(a-1/4*Pi+b*x,2^(1/2))*(c*sec(b*x+a))^(1/2)*sin(2*b*x+2*a)^(1/2)/b
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 16.35 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.95 \[ \int (d \csc (a+b x))^{9/2} \sqrt {c \sec (a+b x)} \, dx=\frac {2 d^4 \cos (2 (a+b x)) \cot (a+b x) \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \left ((-2+\cos (2 (a+b x))) \csc ^4(a+b x)-2 \left (-\cot ^2(a+b x)\right )^{3/4} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {3}{2},\csc ^2(a+b x)\right ) \sec ^2(a+b x)\right )}{7 b \left (-2+\csc ^2(a+b x)\right )} \] Input:

Integrate[(d*Csc[a + b*x])^(9/2)*Sqrt[c*Sec[a + b*x]],x]
 

Output:

(2*d^4*Cos[2*(a + b*x)]*Cot[a + b*x]*Sqrt[d*Csc[a + b*x]]*Sqrt[c*Sec[a + b 
*x]]*((-2 + Cos[2*(a + b*x)])*Csc[a + b*x]^4 - 2*(-Cot[a + b*x]^2)^(3/4)*H 
ypergeometric2F1[1/2, 3/4, 3/2, Csc[a + b*x]^2]*Sec[a + b*x]^2))/(7*b*(-2 
+ Csc[a + b*x]^2))
 

Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.05, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3105, 3042, 3105, 3042, 3110, 3042, 3053, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {c \sec (a+b x)} (d \csc (a+b x))^{9/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {c \sec (a+b x)} (d \csc (a+b x))^{9/2}dx\)

\(\Big \downarrow \) 3105

\(\displaystyle \frac {6}{7} d^2 \int (d \csc (a+b x))^{5/2} \sqrt {c \sec (a+b x)}dx-\frac {2 c d (d \csc (a+b x))^{7/2}}{7 b \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6}{7} d^2 \int (d \csc (a+b x))^{5/2} \sqrt {c \sec (a+b x)}dx-\frac {2 c d (d \csc (a+b x))^{7/2}}{7 b \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 3105

\(\displaystyle \frac {6}{7} d^2 \left (\frac {2}{3} d^2 \int \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}dx-\frac {2 c d (d \csc (a+b x))^{3/2}}{3 b \sqrt {c \sec (a+b x)}}\right )-\frac {2 c d (d \csc (a+b x))^{7/2}}{7 b \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6}{7} d^2 \left (\frac {2}{3} d^2 \int \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}dx-\frac {2 c d (d \csc (a+b x))^{3/2}}{3 b \sqrt {c \sec (a+b x)}}\right )-\frac {2 c d (d \csc (a+b x))^{7/2}}{7 b \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 3110

\(\displaystyle \frac {6}{7} d^2 \left (\frac {2}{3} d^2 \sqrt {c \cos (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {d \sin (a+b x)} \sqrt {d \csc (a+b x)} \int \frac {1}{\sqrt {c \cos (a+b x)} \sqrt {d \sin (a+b x)}}dx-\frac {2 c d (d \csc (a+b x))^{3/2}}{3 b \sqrt {c \sec (a+b x)}}\right )-\frac {2 c d (d \csc (a+b x))^{7/2}}{7 b \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6}{7} d^2 \left (\frac {2}{3} d^2 \sqrt {c \cos (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {d \sin (a+b x)} \sqrt {d \csc (a+b x)} \int \frac {1}{\sqrt {c \cos (a+b x)} \sqrt {d \sin (a+b x)}}dx-\frac {2 c d (d \csc (a+b x))^{3/2}}{3 b \sqrt {c \sec (a+b x)}}\right )-\frac {2 c d (d \csc (a+b x))^{7/2}}{7 b \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 3053

\(\displaystyle \frac {6}{7} d^2 \left (\frac {2}{3} d^2 \sqrt {\sin (2 a+2 b x)} \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)} \int \frac {1}{\sqrt {\sin (2 a+2 b x)}}dx-\frac {2 c d (d \csc (a+b x))^{3/2}}{3 b \sqrt {c \sec (a+b x)}}\right )-\frac {2 c d (d \csc (a+b x))^{7/2}}{7 b \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6}{7} d^2 \left (\frac {2}{3} d^2 \sqrt {\sin (2 a+2 b x)} \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)} \int \frac {1}{\sqrt {\sin (2 a+2 b x)}}dx-\frac {2 c d (d \csc (a+b x))^{3/2}}{3 b \sqrt {c \sec (a+b x)}}\right )-\frac {2 c d (d \csc (a+b x))^{7/2}}{7 b \sqrt {c \sec (a+b x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {6}{7} d^2 \left (\frac {2 d^2 \sqrt {\sin (2 a+2 b x)} \operatorname {EllipticF}\left (a+b x-\frac {\pi }{4},2\right ) \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}{3 b}-\frac {2 c d (d \csc (a+b x))^{3/2}}{3 b \sqrt {c \sec (a+b x)}}\right )-\frac {2 c d (d \csc (a+b x))^{7/2}}{7 b \sqrt {c \sec (a+b x)}}\)

Input:

Int[(d*Csc[a + b*x])^(9/2)*Sqrt[c*Sec[a + b*x]],x]
 

Output:

(-2*c*d*(d*Csc[a + b*x])^(7/2))/(7*b*Sqrt[c*Sec[a + b*x]]) + (6*d^2*((-2*c 
*d*(d*Csc[a + b*x])^(3/2))/(3*b*Sqrt[c*Sec[a + b*x]]) + (2*d^2*Sqrt[d*Csc[ 
a + b*x]]*EllipticF[a - Pi/4 + b*x, 2]*Sqrt[c*Sec[a + b*x]]*Sqrt[Sin[2*a + 
 2*b*x]])/(3*b)))/7
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3053
Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_ 
)]]), x_Symbol] :> Simp[Sqrt[Sin[2*e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b 
*Cos[e + f*x]])   Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f 
}, x]
 

rule 3105
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n 
_.), x_Symbol] :> Simp[(-a)*b*(a*Csc[e + f*x])^(m - 1)*((b*Sec[e + f*x])^(n 
 - 1)/(f*(m - 1))), x] + Simp[a^2*((m + n - 2)/(m - 1))   Int[(a*Csc[e + f* 
x])^(m - 2)*(b*Sec[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[ 
m, 1] && IntegersQ[2*m, 2*n] &&  !GtQ[n, m]
 

rule 3110
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[(a*Csc[e + f*x])^m*(b*Sec[e + f*x])^n*(a*Sin[e + f*x] 
)^m*(b*Cos[e + f*x])^n   Int[1/((a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n), x], 
 x] /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[m - 1/2] && IntegerQ[n - 1/ 
2]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 1.58 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.14

method result size
default \(\frac {\left (-\frac {2 \left (-2 \cos \left (b x +a \right )-2\right ) \sqrt {2 \cot \left (b x +a \right )-2 \csc \left (b x +a \right )+2}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, \operatorname {EllipticF}\left (\sqrt {-\cot \left (b x +a \right )+\csc \left (b x +a \right )+1}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\cot \left (b x +a \right )+\csc \left (b x +a \right )+1}}{7}+\frac {4 \cot \left (b x +a \right )^{3}}{7}-\frac {6 \cot \left (b x +a \right ) \csc \left (b x +a \right )^{2}}{7}\right ) \sqrt {d \csc \left (b x +a \right )}\, d^{4} \sqrt {c \sec \left (b x +a \right )}}{b}\) \(146\)

Input:

int((d*csc(b*x+a))^(9/2)*(c*sec(b*x+a))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/b*(-2/7*(-2*cos(b*x+a)-2)*(2*cot(b*x+a)-2*csc(b*x+a)+2)^(1/2)*(cot(b*x+a 
)-csc(b*x+a))^(1/2)*EllipticF((-cot(b*x+a)+csc(b*x+a)+1)^(1/2),1/2*2^(1/2) 
)*(-cot(b*x+a)+csc(b*x+a)+1)^(1/2)+4/7*cot(b*x+a)^3-6/7*cot(b*x+a)*csc(b*x 
+a)^2)*(d*csc(b*x+a))^(1/2)*d^4*(c*sec(b*x+a))^(1/2)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.14 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.38 \[ \int (d \csc (a+b x))^{9/2} \sqrt {c \sec (a+b x)} \, dx=-\frac {2 \, {\left ({\left (i \, d^{4} \cos \left (b x + a\right )^{2} - i \, d^{4}\right )} \sqrt {-4 i \, c d} F(\arcsin \left (\cos \left (b x + a\right ) + i \, \sin \left (b x + a\right )\right )\,|\,-1) \sin \left (b x + a\right ) + {\left (-i \, d^{4} \cos \left (b x + a\right )^{2} + i \, d^{4}\right )} \sqrt {4 i \, c d} F(\arcsin \left (\cos \left (b x + a\right ) - i \, \sin \left (b x + a\right )\right )\,|\,-1) \sin \left (b x + a\right ) + {\left (2 \, d^{4} \cos \left (b x + a\right )^{3} - 3 \, d^{4} \cos \left (b x + a\right )\right )} \sqrt {\frac {c}{\cos \left (b x + a\right )}} \sqrt {\frac {d}{\sin \left (b x + a\right )}}\right )}}{7 \, {\left (b \cos \left (b x + a\right )^{2} - b\right )} \sin \left (b x + a\right )} \] Input:

integrate((d*csc(b*x+a))^(9/2)*(c*sec(b*x+a))^(1/2),x, algorithm="fricas")
 

Output:

-2/7*((I*d^4*cos(b*x + a)^2 - I*d^4)*sqrt(-4*I*c*d)*elliptic_f(arcsin(cos( 
b*x + a) + I*sin(b*x + a)), -1)*sin(b*x + a) + (-I*d^4*cos(b*x + a)^2 + I* 
d^4)*sqrt(4*I*c*d)*elliptic_f(arcsin(cos(b*x + a) - I*sin(b*x + a)), -1)*s 
in(b*x + a) + (2*d^4*cos(b*x + a)^3 - 3*d^4*cos(b*x + a))*sqrt(c/cos(b*x + 
 a))*sqrt(d/sin(b*x + a)))/((b*cos(b*x + a)^2 - b)*sin(b*x + a))
                                                                                    
                                                                                    
 

Sympy [F(-1)]

Timed out. \[ \int (d \csc (a+b x))^{9/2} \sqrt {c \sec (a+b x)} \, dx=\text {Timed out} \] Input:

integrate((d*csc(b*x+a))**(9/2)*(c*sec(b*x+a))**(1/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (d \csc (a+b x))^{9/2} \sqrt {c \sec (a+b x)} \, dx=\int { \left (d \csc \left (b x + a\right )\right )^{\frac {9}{2}} \sqrt {c \sec \left (b x + a\right )} \,d x } \] Input:

integrate((d*csc(b*x+a))^(9/2)*(c*sec(b*x+a))^(1/2),x, algorithm="maxima")
 

Output:

integrate((d*csc(b*x + a))^(9/2)*sqrt(c*sec(b*x + a)), x)
 

Giac [F]

\[ \int (d \csc (a+b x))^{9/2} \sqrt {c \sec (a+b x)} \, dx=\int { \left (d \csc \left (b x + a\right )\right )^{\frac {9}{2}} \sqrt {c \sec \left (b x + a\right )} \,d x } \] Input:

integrate((d*csc(b*x+a))^(9/2)*(c*sec(b*x+a))^(1/2),x, algorithm="giac")
 

Output:

integrate((d*csc(b*x + a))^(9/2)*sqrt(c*sec(b*x + a)), x)
 

Mupad [F(-1)]

Timed out. \[ \int (d \csc (a+b x))^{9/2} \sqrt {c \sec (a+b x)} \, dx=\int \sqrt {\frac {c}{\cos \left (a+b\,x\right )}}\,{\left (\frac {d}{\sin \left (a+b\,x\right )}\right )}^{9/2} \,d x \] Input:

int((c/cos(a + b*x))^(1/2)*(d/sin(a + b*x))^(9/2),x)
 

Output:

int((c/cos(a + b*x))^(1/2)*(d/sin(a + b*x))^(9/2), x)
 

Reduce [F]

\[ \int (d \csc (a+b x))^{9/2} \sqrt {c \sec (a+b x)} \, dx=\sqrt {d}\, \sqrt {c}\, \left (\int \sqrt {\sec \left (b x +a \right )}\, \sqrt {\csc \left (b x +a \right )}\, \csc \left (b x +a \right )^{4}d x \right ) d^{4} \] Input:

int((d*csc(b*x+a))^(9/2)*(c*sec(b*x+a))^(1/2),x)
 

Output:

sqrt(d)*sqrt(c)*int(sqrt(sec(a + b*x))*sqrt(csc(a + b*x))*csc(a + b*x)**4, 
x)*d**4