\(\int \cos ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx\) [106]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-1)]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 144 \[ \int \cos ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\frac {11 a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 d}+\frac {11 a^2 \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {11 a^2 \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}} \] Output:

11/8*a^(3/2)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+11/8*a^2* 
sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+11/12*a^2*cos(d*x+c)*sin(d*x+c)/d/(a+a 
*sec(d*x+c))^(1/2)+1/3*a^2*cos(d*x+c)^2*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2 
)
 

Mathematica [A] (verified)

Time = 0.36 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.83 \[ \int \cos ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\frac {a \cos (c+d x) \sqrt {a (1+\sec (c+d x))} \left (\sqrt {1-\sec (c+d x)} (35 \sin (c+d x)+11 \sin (2 (c+d x))+2 \sin (3 (c+d x)))+33 \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)\right )}{24 d (1+\cos (c+d x)) \sqrt {1-\sec (c+d x)}} \] Input:

Integrate[Cos[c + d*x]^3*(a + a*Sec[c + d*x])^(3/2),x]
 

Output:

(a*Cos[c + d*x]*Sqrt[a*(1 + Sec[c + d*x])]*(Sqrt[1 - Sec[c + d*x]]*(35*Sin 
[c + d*x] + 11*Sin[2*(c + d*x)] + 2*Sin[3*(c + d*x)]) + 33*ArcTanh[Sqrt[1 
- Sec[c + d*x]]]*Tan[c + d*x]))/(24*d*(1 + Cos[c + d*x])*Sqrt[1 - Sec[c + 
d*x]])
 

Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.01, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3042, 4300, 27, 3042, 4292, 3042, 4292, 3042, 4261, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^3(c+d x) (a \sec (c+d x)+a)^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}{\csc \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 4300

\(\displaystyle \frac {1}{3} a \int \frac {11}{2} \cos ^2(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {11}{6} a \int \cos ^2(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {11}{6} a \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a^2 \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {11}{6} a \left (\frac {3}{4} \int \cos (c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {11}{6} a \left (\frac {3}{4} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {11}{6} a \left (\frac {3}{4} \left (\frac {1}{2} \int \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {11}{6} a \left (\frac {3}{4} \left (\frac {1}{2} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {11}{6} a \left (\frac {3}{4} \left (\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {a \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {a^2 \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {11}{6} a \left (\frac {3}{4} \left (\frac {\sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )\)

Input:

Int[Cos[c + d*x]^3*(a + a*Sec[c + d*x])^(3/2),x]
 

Output:

(a^2*Cos[c + d*x]^2*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (11*a*( 
(a*Cos[c + d*x]*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + d*x]]) + (3*((Sqrt[a 
]*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a*Sin[c + 
d*x])/(d*Sqrt[a + a*Sec[c + d*x]])))/4))/6
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4292
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a 
+ b*Csc[e + f*x]])), x] + Simp[a*((2*n + 1)/(2*b*d*n))   Int[Sqrt[a + b*Csc 
[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && 
 EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)] && IntegerQ[2*n]
 

rule 4300
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[b^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)* 
((d*Csc[e + f*x])^n/(f*n)), x] - Simp[a/(d*n)   Int[(a + b*Csc[e + f*x])^(m 
 - 2)*(d*Csc[e + f*x])^(n + 1)*(b*(m - 2*n - 2) - a*(m + 2*n - 1)*Csc[e + f 
*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] 
 && (LtQ[n, -1] || (EqQ[m, 3/2] && EqQ[n, -2^(-1)])) && IntegerQ[2*m]
 
Maple [A] (verified)

Time = 3.24 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.03

method result size
default \(\frac {a \left (\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (8 \cos \left (d x +c \right )^{2}+22 \cos \left (d x +c \right )+33\right )+\left (-33 \cos \left (d x +c \right )-33\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}{\sqrt {\csc \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\cot \left (d x +c \right )^{2}-1}}\right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{24 d \left (\cos \left (d x +c \right )+1\right )}\) \(148\)

Input:

int(cos(d*x+c)^3*(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/24/d*a*(sin(d*x+c)*cos(d*x+c)*(8*cos(d*x+c)^2+22*cos(d*x+c)+33)+(-33*cos 
(d*x+c)-33)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(2^(1/2)*(cot(d*x+c) 
-csc(d*x+c))/(csc(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+cot(d*x+c)^2-1)^(1/2))) 
*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 300, normalized size of antiderivative = 2.08 \[ \int \cos ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\left [\frac {33 \, {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (8 \, a \cos \left (d x + c\right )^{3} + 22 \, a \cos \left (d x + c\right )^{2} + 33 \, a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{48 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {33 \, {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (8 \, a \cos \left (d x + c\right )^{3} + 22 \, a \cos \left (d x + c\right )^{2} + 33 \, a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{24 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \] Input:

integrate(cos(d*x+c)^3*(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

[1/48*(33*(a*cos(d*x + c) + a)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(- 
a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*c 
os(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(8*a*cos(d*x + c)^3 + 22*a*cos(d* 
x + c)^2 + 33*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin( 
d*x + c))/(d*cos(d*x + c) + d), -1/24*(33*(a*cos(d*x + c) + a)*sqrt(a)*arc 
tan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x 
+ c))) - (8*a*cos(d*x + c)^3 + 22*a*cos(d*x + c)^2 + 33*a*cos(d*x + c))*sq 
rt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)]
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**3*(a+a*sec(d*x+c))**(3/2),x)
 

Output:

Timed out
 

Maxima [F(-1)]

Timed out. \[ \int \cos ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)^3*(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

Timed out
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 535 vs. \(2 (124) = 248\).

Time = 0.66 (sec) , antiderivative size = 535, normalized size of antiderivative = 3.72 \[ \int \cos ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx =\text {Too large to display} \] Input:

integrate(cos(d*x+c)^3*(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

-1/48*(33*sqrt(-a)*a*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan( 
1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3)))*sgn(cos(d*x + c)) - 33*sq 
rt(-a)*a*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/ 
2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))*sgn(cos(d*x + c)) + 4*(33*sqrt(2)*(sq 
rt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^10*sqrt 
(-a)*a^2*sgn(cos(d*x + c)) - 303*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - 
sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^8*sqrt(-a)*a^3*sgn(cos(d*x + c)) + 23 
94*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 
 + a))^6*sqrt(-a)*a^4*sgn(cos(d*x + c)) - 1806*sqrt(2)*(sqrt(-a)*tan(1/2*d 
*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*sqrt(-a)*a^5*sgn(cos( 
d*x + c)) + 309*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d 
*x + 1/2*c)^2 + a))^2*sqrt(-a)*a^6*sgn(cos(d*x + c)) - 19*sqrt(2)*sqrt(-a) 
*a^7*sgn(cos(d*x + c)))/((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2* 
d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/ 
2*d*x + 1/2*c)^2 + a))^2*a + a^2)^3)/d
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\int {\cos \left (c+d\,x\right )}^3\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \] Input:

int(cos(c + d*x)^3*(a + a/cos(c + d*x))^(3/2),x)
 

Output:

int(cos(c + d*x)^3*(a + a/cos(c + d*x))^(3/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \cos ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx=\sqrt {a}\, a \left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )d x +\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{3}d x \right ) \] Input:

int(cos(d*x+c)^3*(a+a*sec(d*x+c))^(3/2),x)
 

Output:

sqrt(a)*a*(int(sqrt(sec(c + d*x) + 1)*cos(c + d*x)**3*sec(c + d*x),x) + in 
t(sqrt(sec(c + d*x) + 1)*cos(c + d*x)**3,x))