\(\int \cos ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx\) [113]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-1)]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 106 \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {19 a^{5/2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {9 a^3 \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 \cos (c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d} \] Output:

19/4*a^(5/2)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+9/4*a^3*s 
in(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/2*a^2*cos(d*x+c)*(a+a*sec(d*x+c))^(1/ 
2)*sin(d*x+c)/d
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.36 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.42 \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=-\frac {a^2 \cos (c+d x) \sqrt {a (1+\sec (c+d x))} \left (\sqrt {1-\sec (c+d x)} (\sin (c+d x)+3 \sin (2 (c+d x)))-7 \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)-32 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},3,\frac {3}{2},1-\sec (c+d x)\right ) \sqrt {1-\sec (c+d x)} \tan (c+d x)\right )}{4 d (1+\cos (c+d x)) \sqrt {1-\sec (c+d x)}} \] Input:

Integrate[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^(5/2),x]
 

Output:

-1/4*(a^2*Cos[c + d*x]*Sqrt[a*(1 + Sec[c + d*x])]*(Sqrt[1 - Sec[c + d*x]]* 
(Sin[c + d*x] + 3*Sin[2*(c + d*x)]) - 7*ArcTanh[Sqrt[1 - Sec[c + d*x]]]*Ta 
n[c + d*x] - 32*Hypergeometric2F1[1/2, 3, 3/2, 1 - Sec[c + d*x]]*Sqrt[1 - 
Sec[c + d*x]]*Tan[c + d*x]))/(d*(1 + Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]])
 

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.02, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3042, 4300, 27, 3042, 4503, 3042, 4261, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^2(c+d x) (a \sec (c+d x)+a)^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}{\csc \left (c+d x+\frac {\pi }{2}\right )^2}dx\)

\(\Big \downarrow \) 4300

\(\displaystyle \frac {1}{2} a \int \frac {1}{2} \cos (c+d x) \sqrt {\sec (c+d x) a+a} (5 \sec (c+d x) a+9 a)dx+\frac {a^2 \sin (c+d x) \cos (c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{4} a \int \cos (c+d x) \sqrt {\sec (c+d x) a+a} (5 \sec (c+d x) a+9 a)dx+\frac {a^2 \sin (c+d x) \cos (c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} a \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (5 \csc \left (c+d x+\frac {\pi }{2}\right ) a+9 a\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a^2 \sin (c+d x) \cos (c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {1}{4} a \left (\frac {19}{2} a \int \sqrt {\sec (c+d x) a+a}dx+\frac {9 a^2 \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos (c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} a \left (\frac {19}{2} a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {9 a^2 \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos (c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {1}{4} a \left (\frac {9 a^2 \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {19 a^2 \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a^2 \sin (c+d x) \cos (c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {a^2 \sin (c+d x) \cos (c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}+\frac {1}{4} a \left (\frac {19 a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {9 a^2 \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

Input:

Int[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^(5/2),x]
 

Output:

(a^2*Cos[c + d*x]*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(2*d) + (a*((19*a 
^(3/2)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (9*a^2 
*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])))/4
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4300
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[b^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)* 
((d*Csc[e + f*x])^n/(f*n)), x] - Simp[a/(d*n)   Int[(a + b*Csc[e + f*x])^(m 
 - 2)*(d*Csc[e + f*x])^(n + 1)*(b*(m - 2*n - 2) - a*(m + 2*n - 1)*Csc[e + f 
*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] 
 && (LtQ[n, -1] || (EqQ[m, 3/2] && EqQ[n, -2^(-1)])) && IntegerQ[2*m]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 
Maple [A] (verified)

Time = 33.09 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.31

method result size
default \(\frac {a^{2} \left (\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (2 \cos \left (d x +c \right )+11\right )+19 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\sqrt {\csc \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\cot \left (d x +c \right )^{2}-1}}\right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{4 d \left (\cos \left (d x +c \right )+1\right )}\) \(139\)

Input:

int(cos(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/4/d*a^2*(sin(d*x+c)*cos(d*x+c)*(2*cos(d*x+c)+11)+19*(cos(d*x+c)+1)*(-cos 
(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(2^(1/2)/(csc(d*x+c)^2-2*cot(d*x+c)*c 
sc(d*x+c)+cot(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c))))*(a*(1+sec(d*x+c 
)))^(1/2)/(cos(d*x+c)+1)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 294, normalized size of antiderivative = 2.77 \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\left [\frac {19 \, {\left (a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (2 \, a^{2} \cos \left (d x + c\right )^{2} + 11 \, a^{2} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{8 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {19 \, {\left (a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (2 \, a^{2} \cos \left (d x + c\right )^{2} + 11 \, a^{2} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \] Input:

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

[1/8*(19*(a^2*cos(d*x + c) + a^2)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqr 
t(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 
a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(2*a^2*cos(d*x + c)^2 + 11*a^2 
*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*co 
s(d*x + c) + d), -1/4*(19*(a^2*cos(d*x + c) + a^2)*sqrt(a)*arctan(sqrt((a* 
cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (2* 
a^2*cos(d*x + c)^2 + 11*a^2*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d* 
x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)]
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**2*(a+a*sec(d*x+c))**(5/2),x)
 

Output:

Timed out
 

Maxima [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

Timed out
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 364 vs. \(2 (90) = 180\).

Time = 0.52 (sec) , antiderivative size = 364, normalized size of antiderivative = 3.43 \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=-\frac {\sqrt {2} \sqrt {-a} a^{5} {\left (\frac {19 \, \sqrt {2} \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right )}{a^{2} {\left | a \right |}} + \frac {8 \, {\left (19 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{6} - 171 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} a + 89 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a^{2} - 9 \, a^{3}\right )}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )}^{2} a^{2}}\right )} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{16 \, d} \] Input:

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

-1/16*sqrt(2)*sqrt(-a)*a^5*(19*sqrt(2)*log(abs(2*(sqrt(-a)*tan(1/2*d*x + 1 
/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 4*sqrt(2)*abs(a) - 6*a)/a 
bs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)) 
^2 + 4*sqrt(2)*abs(a) - 6*a))/(a^2*abs(a)) + 8*(19*(sqrt(-a)*tan(1/2*d*x + 
 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6 - 171*(sqrt(-a)*tan(1/2*d 
*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*a + 89*(sqrt(-a)*tan( 
1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a^2 - 9*a^3)/((( 
sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6 
*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a 
 + a^2)^2*a^2))*sgn(cos(d*x + c))/d
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int {\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \] Input:

int(cos(c + d*x)^2*(a + a/cos(c + d*x))^(5/2),x)
 

Output:

int(cos(c + d*x)^2*(a + a/cos(c + d*x))^(5/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\sqrt {a}\, a^{2} \left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}d x +2 \left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )d x \right )+\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2}d x \right ) \] Input:

int(cos(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x)
 

Output:

sqrt(a)*a**2*(int(sqrt(sec(c + d*x) + 1)*cos(c + d*x)**2*sec(c + d*x)**2,x 
) + 2*int(sqrt(sec(c + d*x) + 1)*cos(c + d*x)**2*sec(c + d*x),x) + int(sqr 
t(sec(c + d*x) + 1)*cos(c + d*x)**2,x))