\(\int \frac {\sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\) [129]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 77 \[ \int \frac {\sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {3 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}} \] Output:

3/4*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^(1/2)/ 
a^(3/2)/d-1/2*tan(d*x+c)/d/(a+a*sec(d*x+c))^(3/2)
 

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.22 \[ \int \frac {\sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\left (-2 \sqrt {1-\sec (c+d x)}+3 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) (1+\sec (c+d x))\right ) \tan (c+d x)}{4 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{3/2}} \] Input:

Integrate[Sec[c + d*x]^2/(a + a*Sec[c + d*x])^(3/2),x]
 

Output:

((-2*Sqrt[1 - Sec[c + d*x]] + 3*Sqrt[2]*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqr 
t[2]]*(1 + Sec[c + d*x]))*Tan[c + d*x])/(4*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 
+ Sec[c + d*x]))^(3/2))
 

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 4284, 3042, 4282, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x)}{(a \sec (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4284

\(\displaystyle \frac {3 \int \frac {\sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx}{4 a}-\frac {\tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a}-\frac {\tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4282

\(\displaystyle -\frac {3 \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+2 a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{2 a d}-\frac {\tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {3 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

Input:

Int[Sec[c + d*x]^2/(a + a*Sec[c + d*x])^(3/2),x]
 

Output:

(3*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*S 
qrt[2]*a^(3/2)*d) - Tan[c + d*x]/(2*d*(a + a*Sec[c + d*x])^(3/2))
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4282
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2/f   Subst[Int[1/(2*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[ 
a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4284
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), 
x_Symbol] :> Simp[(-Cot[e + f*x])*((a + b*Csc[e + f*x])^m/(f*(2*m + 1))), x 
] + Simp[m/(b*(2*m + 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x 
], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 
Maple [A] (verified)

Time = 1.34 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.49

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\left (2 \cos \left (d x +c \right )-2\right ) \cot \left (d x +c \right )+3 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{4 d \,a^{2} \left (\cos \left (d x +c \right )+1\right )}\) \(115\)

Input:

int(sec(d*x+c)^2/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/4/d/a^2*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)*((2*cos(d*x+c)-2)*cot(d* 
x+c)+3*(cos(d*x+c)+1)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln((-2*cos(d*x+ 
c)/(cos(d*x+c)+1))^(1/2)-cot(d*x+c)+csc(d*x+c)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 140 vs. \(2 (62) = 124\).

Time = 0.10 (sec) , antiderivative size = 329, normalized size of antiderivative = 4.27 \[ \int \frac {\sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\left [-\frac {3 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {3 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \] Input:

integrate(sec(d*x+c)^2/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

[-1/8*(3*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*log((2*sqr 
t(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x 
 + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos 
(d*x + c) + 1)) + 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*s 
in(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*( 
3*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2)*sqr 
t((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) 
+ 2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c))/(a^ 
2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]
 

Sympy [F]

\[ \int \frac {\sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(sec(d*x+c)**2/(a+a*sec(d*x+c))**(3/2),x)
 

Output:

Integral(sec(c + d*x)**2/(a*(sec(c + d*x) + 1))**(3/2), x)
 

Maxima [F]

\[ \int \frac {\sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{2}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(sec(d*x+c)^2/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

integrate(sec(d*x + c)^2/(a*sec(d*x + c) + a)^(3/2), x)
 

Giac [A] (verification not implemented)

Time = 0.42 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.40 \[ \int \frac {\sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {\frac {3 \, \sqrt {2} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {\sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{4 \, d} \] Input:

integrate(sec(d*x+c)^2/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

-1/4*(3*sqrt(2)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d 
*x + 1/2*c)^2 + a)))/(sqrt(-a)*a*sgn(cos(d*x + c))) + sqrt(2)*sqrt(-a*tan( 
1/2*d*x + 1/2*c)^2 + a)*tan(1/2*d*x + 1/2*c)/(a^2*sgn(cos(d*x + c))))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int(1/(cos(c + d*x)^2*(a + a/cos(c + d*x))^(3/2)),x)
 

Output:

int(1/(cos(c + d*x)^2*(a + a/cos(c + d*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {\sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right )}{a^{2}} \] Input:

int(sec(d*x+c)^2/(a+a*sec(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*int((sqrt(sec(c + d*x) + 1)*sec(c + d*x)**2)/(sec(c + d*x)**2 + 2 
*sec(c + d*x) + 1),x))/a**2