\(\int \frac {(a+a \sec (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [176]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 107 \[ \int \frac {(a+a \sec (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {4 a^2 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {8 a^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \] Output:

4*a^2*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^(1 
/2)/d+8/3*a^2*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*sec( 
d*x+c)^(1/2)/d+2/3*a^2*sin(d*x+c)/d/sec(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.36 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.46 \[ \int \frac {(a+a \sec (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a^2 \left (\cos \left (\frac {c}{2}\right )-i \sin \left (\frac {c}{2}\right )\right ) \left (-i \cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right ) \left (12-\frac {24 \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}+8 \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right ) \sec (c+d x)+2 i \sin (c+d x)\right )}{3 d \sqrt {\sec (c+d x)}} \] Input:

Integrate[(a + a*Sec[c + d*x])^2/Sec[c + d*x]^(3/2),x]
 

Output:

(a^2*(Cos[c/2] - I*Sin[c/2])*((-I)*Cos[c/2] + Sin[c/2])*(12 - (24*Hypergeo 
metric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))])/Sqrt[1 + E^((2*I)*(c + d* 
x))] + 8*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E 
^((2*I)*(c + d*x))]*Sec[c + d*x] + (2*I)*Sin[c + d*x]))/(3*d*Sqrt[Sec[c + 
d*x]])
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 4275, 3042, 4258, 3042, 3119, 4533, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4275

\(\displaystyle \int \frac {\sec ^2(c+d x) a^2+a^2}{\sec ^{\frac {3}{2}}(c+d x)}dx+2 a^2 \int \frac {1}{\sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 a^2 \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4258

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3119

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

\(\Big \downarrow \) 4533

\(\displaystyle \frac {4}{3} a^2 \int \sqrt {\sec (c+d x)}dx+\frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4}{3} a^2 \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {4}{3} a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4}{3} a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 a^2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {8 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

Input:

Int[(a + a*Sec[c + d*x])^2/Sec[c + d*x]^(3/2),x]
 

Output:

(4*a^2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d 
+ (8*a^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/ 
(3*d) + (2*a^2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4275
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^2, x_Symbol] :> Simp[2*a*(b/d)   Int[(d*Csc[e + f*x])^(n + 1), x], x] 
 + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, 
 e, f, n}, x]
 

rule 4533
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + 
Simp[(C*m + A*(m + 1))/(b^2*m)   Int[(b*Csc[e + f*x])^(m + 2), x], x] /; Fr 
eeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(227\) vs. \(2(96)=192\).

Time = 2.16 (sec) , antiderivative size = 228, normalized size of antiderivative = 2.13

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(228\)
parts \(-\frac {2 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {4 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(453\)

Input:

int((a+a*sec(d*x+c))^2/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-4/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(2*sin(1/ 
2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+ 
2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF( 
cos(1/2*d*x+1/2*c),2^(1/2))-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1 
/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))/(-2*sin(1/2*d*x+1 
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2* 
c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.25 \[ \int \frac {(a+a \sec (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \, {\left (a^{2} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 2 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )\right )}}{3 \, d} \] Input:

integrate((a+a*sec(d*x+c))^2/sec(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

2/3*(a^2*sqrt(cos(d*x + c))*sin(d*x + c) - 2*I*sqrt(2)*a^2*weierstrassPInv 
erse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 2*I*sqrt(2)*a^2*weierstrassPI 
nverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)*a^2*weierstrass 
Zeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3 
*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
 c) - I*sin(d*x + c))))/d
 

Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=a^{2} \left (\int \frac {1}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {2}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \sqrt {\sec {\left (c + d x \right )}}\, dx\right ) \] Input:

integrate((a+a*sec(d*x+c))**2/sec(d*x+c)**(3/2),x)
 

Output:

a**2*(Integral(sec(c + d*x)**(-3/2), x) + Integral(2/sqrt(sec(c + d*x)), x 
) + Integral(sqrt(sec(c + d*x)), x))
 

Maxima [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*sec(d*x+c))^2/sec(d*x+c)^(3/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

integrate((a*sec(d*x + c) + a)^2/sec(d*x + c)^(3/2), x)
 

Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*sec(d*x+c))^2/sec(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

integrate((a*sec(d*x + c) + a)^2/sec(d*x + c)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int((a + a/cos(c + d*x))^2/(1/cos(c + d*x))^(3/2),x)
 

Output:

int((a + a/cos(c + d*x))^2/(1/cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=a^{2} \left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{2}}d x +2 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )}d x \right )+\int \sqrt {\sec \left (d x +c \right )}d x \right ) \] Input:

int((a+a*sec(d*x+c))^2/sec(d*x+c)^(3/2),x)
 

Output:

a**2*(int(sqrt(sec(c + d*x))/sec(c + d*x)**2,x) + 2*int(sqrt(sec(c + d*x)) 
/sec(c + d*x),x) + int(sqrt(sec(c + d*x)),x))