\(\int \frac {1}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx\) [198]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 112 \[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {3 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {\sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))} \] Output:

3*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^(1/2)/ 
a/d-cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*sec(d*x+c)^(1/ 
2)/a/d-sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.66 (sec) , antiderivative size = 317, normalized size of antiderivative = 2.83 \[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (\frac {2 i \sqrt {2} e^{-i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (3 \left (1+e^{2 i (c+d x)}\right )+3 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{d \left (-1+e^{2 i c}\right )}-\frac {\left (\cos \left (\frac {1}{2} (c-d x)\right )+2 \cos \left (\frac {1}{2} (3 c+d x)\right )+2 \cos \left (\frac {1}{2} (c+3 d x)\right )+\cos \left (\frac {1}{2} (5 c+3 d x)\right )\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)}}{2 d}\right ) \sec (c+d x)}{a (1+\sec (c+d x))} \] Input:

Integrate[1/(Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])),x]
 

Output:

(Cos[(c + d*x)/2]^2*(((2*I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c 
+ d*x)))]*(3*(1 + E^((2*I)*(c + d*x))) + 3*(-1 + E^((2*I)*c))*Sqrt[1 + E^( 
(2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] 
+ E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hyperge 
ometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*E^(I*(c + d*x))*(-1 + 
 E^((2*I)*c))) - ((Cos[(c - d*x)/2] + 2*Cos[(3*c + d*x)/2] + 2*Cos[(c + 3* 
d*x)/2] + Cos[(5*c + 3*d*x)/2])*Csc[c/2]*Sec[c/2]*Sec[(c + d*x)/2]*Sqrt[Se 
c[c + d*x]])/(2*d))*Sec[c + d*x])/(a*(1 + Sec[c + d*x]))
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.04, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3042, 4306, 27, 3042, 4274, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {\sec (c+d x)} (a \sec (c+d x)+a)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 4306

\(\displaystyle -\frac {\int -\frac {3 a-a \sec (c+d x)}{2 \sqrt {\sec (c+d x)}}dx}{a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {3 a-a \sec (c+d x)}{\sqrt {\sec (c+d x)}}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {3 a-a \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {3 a \int \frac {1}{\sqrt {\sec (c+d x)}}dx-a \int \sqrt {\sec (c+d x)}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {3 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx-a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {6 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {6 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

Input:

Int[1/(Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])),x]
 

Output:

((6*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d - 
 (2*a*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d)/ 
(2*a^2) - (Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*(a + a*Sec[c + d*x]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4306
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_)), x_Symbol] :> Simp[Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(a + b*Csc[e + 
f*x]))), x] - Simp[1/a^2   Int[(d*Csc[e + f*x])^n*(a*(n - 1) - b*n*Csc[e + 
f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, 0 
]
 
Maple [A] (verified)

Time = 1.57 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.78

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(199\)

Input:

int(1/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

1/a*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1 
/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(Ellip 
ticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+ 
2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2*c)/(-2*sin(1/ 
2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d 
*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.66 \[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {{\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate(1/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")
 

Output:

1/2*((I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d 
*x + c) + I*sin(d*x + c)) + (-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstr 
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*(-I*sqrt(2)*cos(d*x 
+ c) - I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d* 
x + c) + I*sin(d*x + c))) - 3*(I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierst 
rassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) 
 - 2*sqrt(cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d)
 

Sympy [F]

\[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {\int \frac {1}{\sec ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\sec {\left (c + d x \right )}}}\, dx}{a} \] Input:

integrate(1/sec(d*x+c)**(1/2)/(a+a*sec(d*x+c)),x)
 

Output:

Integral(1/(sec(c + d*x)**(3/2) + sqrt(sec(c + d*x))), x)/a
 

Maxima [F]

\[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=\int { \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate(1/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")
 

Output:

integrate(1/((a*sec(d*x + c) + a)*sqrt(sec(d*x + c))), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=\int { \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate(1/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorithm="giac")
 

Output:

integrate(1/((a*sec(d*x + c) + a)*sqrt(sec(d*x + c))), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=\int \frac {1}{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int(1/((a + a/cos(c + d*x))*(1/cos(c + d*x))^(1/2)),x)
 

Output:

int(1/((a + a/cos(c + d*x))*(1/cos(c + d*x))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{2}+\sec \left (d x +c \right )}d x}{a} \] Input:

int(1/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x)
 

Output:

int(sqrt(sec(c + d*x))/(sec(c + d*x)**2 + sec(c + d*x)),x)/a